A Measurement Study of Wechat Mini-Apps

YUE ZHANG, The Ohio State University, USA

BAYAN TURKISTANI, The Ohio State University, USA
ALLEN YUQING YANG, The Ohio State University, USA
CHAOSHUN ZUQO, The Ohio State University, USA
ZHIQIANG LIN, The Ohio State University, USA

A new mobile computing paradigm, dubbed mini-app, has been growing rapidly over the past few years since
being introduced by WECHAT in 2017. In this paradigm, a host app allows its end-users to install and run
mini-apps inside itself, enabling the host app to build an ecosystem around (much like Google Play and Apple
AppStore), enrich the host’s functionalities, and offer mobile users elevated convenience without leaving the
host app. It has been reported that there are over millions of mini-apps in WECHAT. However, little information
is known about these mini-apps at an aggregated level. In this paper, we present MINICRAWLER, the first
scalable and open source WECHAT mini-app crawler that has indexed over 1,333,308 mini-apps. It leverages
a number of reverse engineering techniques to uncover the interfaces and APIs in WECHAT for crawling the
mini-apps. With the crawled mini-apps, we then measure their resource consumption, API usage, library
usage, obfuscation rate, app categorization, and app ratings at an aggregated level. The details of how we
develop MINICRAWLER and our measurement results are reported in this paper.

CCS Concepts: « Network performance evaluation — Network Measurement; « Security and privacy
— Systems security; Software and application security; « Software and its engineering — Software
system structures.

Additional Key Words and Phrases: Mini-apps, Crawler, Wechat

ACM Reference Format:

Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhigiang Lin. 2021. A Measurement
Study of Wechat Mini-Apps. Proc. ACM Meas. Anal. Comput. Syst. 5, 2, Article 14 (June 2021), 25 pages.
https://doi.org/10.1145/3460081

1 INTRODUCTION

Increasingly, a new mobile-computing paradigm, dubbed mini-app, which was debuted by WECHAT
in 2017 [1] that allowed an end-user to use mobile apps directly downloaded from WECHAT, is
becoming more and more popular. With this paradigm, a host app such as WECHAT, enables the
execution of mini-apps, which are small apps built by 3rd-party developers that can run within
the host, have significantly enriched functionalities of the host and elevated user experience (e.g.,
“WeChat is used for everything from booking doctor’s appointments to hailing taxi rides, making
payments, shopping, and even filing for a divorce” [2]), thereby substantially increasing the users’
stickiness [3-5]. It has been reported that WECHAT has more than one million mini-apps and 440

Authors’ addresses: Yue Zhang, The Ohio State University, Ohio, USA, zhang.12047@osu.edu; Bayan Turkistani, The
Ohio State University, Ohio, USA, turkistani.3@osu.edu; Allen Yuging Yang, The Ohio State University, Ohio, USA,
yang.5656@osu.edu; Chaoshun Zuo, The Ohio State University, Ohio, USA, zuo.118@osu.edu; Zhiqiang Lin, The Ohio State
University, Ohio, USA, lin.3021@osu.edu.

I

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
2476-1249/2021/6-ART14.
https://doi.org/10.1145/3460081

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14

https://doi.org/10.1145/3460081
https://creativecommons.org/licenses/by/4.0/

14:2 Yue Zhang et al.

million monthly-active mini-app users [6-8]. Today, the mini-app paradigm is not exclusively
available in WECHAT. “Following WeChat’s growth in China, companies like Facebook, Google, and
Apple began allowing third-party apps and services to plug into their own messaging platforms” [2].

However, even though the mini-app paradigm has been appeared for more than four years, it
still remains a myth at an aggregated level, and many research questions have not been answered.
First and foremost, it would be quite important to investigate how ‘mini’ a mini-app really is.
The mini-apps are given the name ‘mini’ likely because they are executed inside the host such as
WECHAT, and they are expected to be smaller when compared to native apps. Additionally, the host
platform such as WECHAT even limits its size to be less than 12 MB [9], compared with other native
apps that require tens or hundreds MB of storage (e.g., the maximum app size of an Android app
is up to 4GB [10]). However, there is no study to quantify the resource usage of the mini-apps and
justify the benefits of using mini-apps other than the obvious reason of increasing user’s stickiness
from the platform vendor’s perspective.

Second, there is a need to characterize the mini-app ecosystem for developers and researchers to
better understand the mini-app paradigm. There have been a large body of measurement studies
focusing on traditional native apps including Android apps (e.g., [11-14]) and iOS apps (e.g., [15, 16]).
These efforts have provided various insights of the apps such as the current status and trend of
the apps. For example, PlayDrone [11] provided a measurement study of Google Play apps at scale
and revealed a number of trends such as the types of apps that likely receive higher popularity
and quality. Similar to traditional native apps, WECHAT mini-apps are also experiencing a drastic
consumer boom. As such, a comprehensive study of the status and trends of mini-apps, particularly
on the category of the apps, the functionality they provided, and the current programming practices,
can benefit the researchers, developers, and the ecosystem as a whole.

Motivated by the above two needs, in this paper, we present MINICRAWLER, the first large-scale
mini-app crawler that is able to automatically download, unpack, and index the mini-apps from
WECHAT. Multiple challenges have to be addressed when developing MINICRAWLER. First, WECHAT
is a closed ecosystem. Little information has been disclosed, other than the public available mini-
app development manuals and SDKs [17, 18]. We must therefore reverse-engineer WECHAT to
understand its interfaces and workflows. Second, WECHAT is a giant software (its latest Android
version has 163 MB) and it heavily uses native code and obfuscation to thwart the reverse engi-
neering attempts. Third, WECHAT also collects user’s behavior and running environments to build
a risk-model for each account [19] and block this account if certain behaviors have exceeded some
threshold (e.g., a rate limit). Finally, unlike Google Play, there is no public store, nor public interface
to allow end users to query the mini-apps. Users have to do so inside WECHAT, but there is also no
visible app category and unfortunately users have to enter the corresponding keywords to query
the available mini-apps.

We have addressed these challenges when developing our MINICRAWLER. In particular, to build
our crawler, we first reverse engineered WECHAT binary code and identified a search interface (i.e.,
a server APl invoked by WECHAT) that can reveal the mini-app IDs (i.e., the unique identifiers of
the mini-apps) by exhaustively feeding different keywords to this API To automatically build our
keywords list, we leverage natural language processing (NLP) techniques such as word splitting [20].
With the retrieved mini-app IDs, we developed an Xposed [21] module to continuously trigger the
interface in WECHAT that downloads a mini-app when provided its ID. With the crawled mini-apps
(each in a packed binary file named wxapkg), we then developed an unpacking tool to automatically
unpack the wxapkgs, resulting a set of files including resource declaration files, UL and JavaScript
code files. The mini-app logic is encoded in the JavaScript code. With these unpacked files, we can
then perform various measurement analysis, as we have demonstrated in this paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:3

Contribution. In short, we make the following contributions in this paper:

e Practical Tool. We design and implement MINICRAWLER, the first open source tool that is
able to crawl WECHAT mini-apps automatically and at scale. Its source code has been made
public available at https://github.com/OSUSecLab/MiniCrawler.

e Large Scale Evaluation. With MINICRAWLER, we have crawled over 1,333,308 mini-apps in a
5-month period since August 2020. These wxapkgs have consumed 2.14 TB storage space. After
the unpacking, it yields a total of 193,651,923 files, and 21,127,129,690 lines of JavaScript code.

e Empirical Results. With these collected mini-apps, we have measured both their meta-data
and their JavaScript code. Our experimental results show that a mini-app is on average 1.61
MB in size (11x smaller when compared to native apps) and has hundreds of API invocations,
most of the mini-apps are obfuscated, the largest set of mini-apps is in the education category,
and the category with the highest average ratings is the Hair Salon.

2 BACKGROUND
2.1 The Mini-app Architecture

Under the mini-app paradigm, the mobile app that mini-apps run atop is called the host app (e.g.,
WECHAT in this paper) or host for short. As shown in Figure 1, to provide a native-like user ex-
perience, a mini-app relies on a (i) front-end, which runs atop the host for user interaction and
handling of system resources including peripheral devices, and an optional (ii) back-end, which
provides cloud services such as storage and other server side computations.

Front-end. The front-end of a mini-app exe-
cutes atop the host and interacts with the end

users. As shown in Figure 1, it is alayered archi- =% @ @Cloud Base @
. . . . < v
tecture in which the host provides in-app APIs T % [Mini_appo,s] [Mini-app.'s] [Mini-appM's]
. z
to the mini-apps. These APIs can be grouped =& back-end back-end back-end

into 42 categories [22], and they can be used s ’

to access the system resources (e.g., Bluetooth, f

GPS, Microphone, and Camera) managed by the & § [Mini-appo] [Mini-app:]
OS (e.g., Android or iOS), operate with the data :; £

provided by WECHAT (e.g., obtaining the user’s z =) [In-app] [Tn-app] [Tn-app] [In-app]
nickname and billing address from WECHAT), APly APL APLJ (AP
communicate with other mini-apps and APIs, - ’
render the Uls, so on and so forth. To prevent a w .

mini-app from abusing system resources, there § 2 [System Resources]
is an in-app permission check by the host to & %

determine whether the mini-app has the cor-
responding permissions (e.g., granted by the
end-users) when accessing a resource.

Similar to an Android APK, a mini-app bi-
nary is also packed in a compressed file in the format of wxapkg [23]. As illustrated in Figure 2,
a wxapgk typically contains: (i) a configuration JSON file named app. json, which describes the
general features of the mini-app (e.g., the permissions the mini-app requires); (ii) one or multiple
folders that contain the resource files (e.g., images and audios); (iii) one or multiple folders that
contain the files that describe the Uls (called pages by Tencent) of the mini-app. Particularly, each
page is composed of four files including (1) a WXML file [24], which is written by a markup language
WXML that defined by Tencent for UI design such as buttons or input boxes; (2) a JavaScript file,

Fig. 1. A typical mini-app architecture

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:4 Yue Zhang et al.

specifying the logic to be executed when a user interacts with the corresponding Uls; (3) a cascading
style sheet file encode with WXSS format, specifying how to display the Ul elements; and (4) finally
a style configuration file defined by Tencent [25], specifying the window behaviours of the UI (e.g.,
UI orientation).

Back-end. A mini-app can offer various services to end-users, and

there could be a mini-app specific server running in a back-end wxapkg
cloud for such services. To this end, WECHAT provides back-end :le’ls"j““
cloud services to mini-app developers, who just need to customize L—image
and configure the back-end and then directly use APIs in the mini- appTicon.-png
app to interact with the cloud back-end (e.g., accessing a database). pages
index
To prevent any misuse of the WECHAT user’s data, WECHAT will index.wxml
vet all of the outgoing traffic of a mini-app and only allow them jndex.3s
to communicate with the WECHAT’s back-end first, from which it index.json
can further connect to any other 3rd-party back-ends [26]. login
login.wxml
lggin.js
2.2 The Mini-app Market login.wxss
login. json

Unlike traditional mobile app market store such as Google Play,
which usually has a web portal to show various apps in different
categories for end-users to select the apps of interests based on
the descriptions, reviews, and ratings, WECHAT does not provide
such a web portal. Instead, an end-user can only retrieve the list
of the mini-apps by entering the keywords in a built-in searching
interface within the WECHAT app. At a high level, this WECHAT interface will return a list of
the mini-apps that match the keywords, and the user cannot see information other than names
and the brief description of the retrieved mini-app. To further view other information about a
specific mini-app, the user has to launch the app and check its property page, which contains more
information about the mini-app such as its ratings (if enough users have rated this mini-app), the
description, last updated time, and the developer account ID.

In addition to searching through the keywords, an end-user can also know the specific mini-apps
by (1) QR code scanning in which the QR code can be placed online (e.g., in web pages) or offline
(e.g., printed and displayed on shop’s windows or desks), (2) URL sharing in which the URL of
the mini-app can be shared with friends, and (3) Mini-app redirection with which a mini-app can
promote other mini-apps by creating a button and allowing users to click and fetch.

Fig. 2. The structure of a typical
wxapkg.

3 CHALLENGES AND INSIGHTS

The goal of this work is to have an aggregated view of the mini-apps in the WECHAT platform. To this
end, we must design a crawler to obtain and index the mini-apps at a large scale. Unfortunately, this
is non-trivial, particularly because WECHAT is a closed ecosystem and there are many roadblocks
for mini-app crawling. In this section, we describe the challenges encountered when developing a
scalable crawler (§3.1) and our insights of how to address them (§3.2).

3.1 Challenges

There are multiple ways to obtain mini-apps. For instance, one could manually enter the keywords
in the mini-app searching interface inside WECHAT to download them, or scan the QR code, or use
the shared URLs of the mini-app to obtain them, as mentioned in §2.2. However, none of these ap-
proaches is able to scale. Also, unlike Google Play store, there is no web portal of the mini-apps. As

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:5

such, state-of-the-art web-crawler will not work for mini-apps. For example, one cannot sniff the traf-
fic between WECHAT and its server with networking traffic analysis tools such as Burp Suite [27] to
build the crawler, since WECHAT has protected the communication between its client and the server
using private and encrypted protocols. Therefore, we must reverse engineer the WECHAT apps, iden-
tify the mini-app searching interface from the WECHAT binary, automate the keywords generation,
and obtain the mini-apps at scale. More specifically, we have to address the following challenges.

C1: Identifying the mini-app searching and downloading interface inside WECHAT code.
Since the only interface available for searching the mini-apps is inside the WECHAT app, we must
reverse engineer the WECHAT code to identify it. However, WECHAT is a giant software with over
one hundred MB, and is composed of both native code and Java Bytecode. For instance, its recent
Android version has over 82,256 files including 93 shared object (so) files, and 56,492 Java classes
(after the decompilation by using tool Jadx [28]). Meanwhile, it heavily uses obfuscations (such as
symbol renaming, anti-debugging, and anti-emulation) to thwart the reverse engineering attempts.
How to pinpoint the code of our interest, invoke them with the right input, and parse the output
returned from the server is the first challenge we have to address.

C2: Creating the keywords list with broader coverage. Even if we can identify the searching
interface inside the WECHAT app to collect the mini-app information based on the keyword, we
have to define the list of the words, since it directly impacts how many mini-apps we can reach.
An intuitive approach is to try to use all possible single words (e.g., Chinese characters, English
letters and numbers) for the searching. However, a single word search can only return at most 500
mini-apps based on their popularity and the closeness to the keyword, and only popular mini-apps
will be collected. As such, we have to not only use single words, but also use phrases and their
combinations for the search in order to collect as many mini-apps as possible. However, there are
too many of phrases in Chinese, and it is not practical to try all of them.

C3. Circumventing the restrictions imposed by WECHAT. While at client side WECHAT already
introduced various roadblocks to thwart the reverse engineering (e.g., we cannot run WECHAT
in emulators), it also builds a risk-model for each user at the server side based on the collected
user behaviors. For instance, if a user is aggressively using certain dynamic analysis framework
such as hooking [29], her account could be banned from temporally restricted login to permanent
account blocking, according to the proprietary risk-model for each user maintained by the WECHAT
server [30]. Once the account is blocked, it costs $5-$30 to obtain another one, since WECHAT
requires a unique cellphone number to be associated with the account. The efforts of crawling
mini-apps can be daunting and costly when accounts are banned.

3.2 Insights

$1: Using both static and dynamic binary analysis. To address C1, we have to reverse engineer
the WECHAT app. There are two basic approaches in the reverse engineering: dynamic analysis and
static analysis, where dynamic analysis can pinpoint the code of interests, particularly for large
software such as WECHAT, and static analysis can expand the code coverage missed by dynamic
analysis. These two approaches are often used together.

In particular, while using WECHAT to search the mini-apps, we notice that there is a search
button. Then, there must exist a function to handle the click event, and this event handler (if we
can locate it) will send the input request to the WECHAT server to return the list of the available
mini-apps matching the keywords searched. That is, there must be a server API and we just have to
prepare for the right input to trigger this API. This preparation is performed by the event handler.
Therefore, we first used dynamic analysis to locate this event handler. In Android, the event handler

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:6 Yue Zhang et al.

is attached to the GUI element (also called View in Android) as a class field. However, based on our
experiment, we found that the View is a WebView and the button is a HTML button which makes
function call to Java (native code) through Javascript (web code). To locate the implementation of
the searching logic in Java, we hooked and traced the JavascriptInterface, which is the only
function that the Javascript code can use to call Java code.

Having identified function JavascriptInterface, we then started our static analysis by first
decompiling the WECHAT code with tool Jadx [28]. However, the code is heavily obfuscated.
Fortunately, we found WECHAT contains rich logging code, and the strings (e.g., “Constructors:
keyword=%s”) used in the logging routine provide huge clues on the functionality of the code.
With these logging strings, we quickly located the code that generate the HTTP(S) request to
the WECHAT server. Through further reverse engineering of the corresponding parameters of the
HTTP(S) request including the URLs, HTTP headers, and tokens (by dynamically intercepting
the outgoing networking APIs), we were then able to develop an independent python program to
generate the searching request without running the WECHAT app any more.

While we have reverse engineered the mini-app searching API, we still were not able to download
the mini-apps and we had to locate the downloading API from the WECHAT code. We followed
similar practice of dynamic analysis first and then static analysis next to locate the code. However,
unlike the mini-app searching API which we can use an independent program to directly query the
WECHAT server by providing the corresponding parameters, the downloading API is much more
complicated. More specifically, it involves many asynchronous calls, and even worse we cannot con-
firm whether it uses HTTP(S) or not. However, we can still download the mini-apps by running the
real WECHAT app, as long as we are able to find out the interface that takes mini-app identifier as in-
put for the downloading. As such, we built a call graph from the handler function of download event
and dynamically hooked all of the callees. By printing out all of their parameters, we successfully
identified the function that takes a mini-app ID as input. Then, at run-time, we dynamically update
this mini-app ID in real WECHAT app, and we can thus download the corresponding mini-apps.

$2: Using NLP to collect and generate high quality keywords. To address C2, we need to
optimize the keywords to maximize the coverage of the mini-apps and meanwhile minimize the
amount of requests to the WECHAT server. To this end, we use both the breadth-first search (BES)
and depth-first search (DFS) algorithms. In our BFS, we use the top 1,000 most commonly used
Chinese characters as the keywords to search for the seed mini-apps, which will be further used for
our DFS search. In our DFS, we expand the keywords from the collected names and descriptions,
based on the insight that mini-apps in the same category tend to have similar descriptions.

While it is quite straightforward to perform BFS with the provided most commonly used words,
we need NLP analysis for our DFS search. More specifically, in the DFS search, we have to perform
word splitting (using NLP) on the seed mini-apps’ name and description, and then use the split words
as keywords. We continue such a process for all newly searched mini-apps. The key observation
for this approach is that mini-apps’ descriptions tend to contain high quality words, since WECHAT
limits the length of description to be no more than 120 words and it requires the developers to
summarize the usage of the mini-app concisely and accurately. Therefore, the mini-apps providing
similar functionalities are very likely to have common words in their description, and searching
those keywords can allow us to reach more apps.

We believe that the mini-apps collected by our algorithm are representative for two reasons: (i)
Our algorithm has used the top 1,000 most common Chinese characters as the initial inputs, and
the searched results are likely to be the commonly used mini-apps. As discussed earlier, the only
interface for an end-user to fetch a mini-app is to use the built-in interface, which requires the
user to enter a Chinese character or word into the search box. A mini-app that uses a rarely-used

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:7

§4.2 p— §4.1
Keywords] Metadata |, _| Searching
Generator — Scraper * " APIL

SQLite —
I ‘WeChat Server : ,
L]
Package e] N Downloading
-wxpkg Downloader API
§4.3 —

Fig. 3. The architecture of MINICRAWLER.

Chinese character or word will make the mini-app less likely to be exposed to the user. (ii) Our
algorithm achieves a large coverage: based on the current report [6], WECHAT now have more than
one million mini-apps available and our algorithm have collected 1,395,456 meta-data.

$3: Using premium accounts to avoid being blocked. WECHAT has a sophisticated risk model
to assess each user’s account and block it when necessary, in order to fight for the “Internet Water
Army” [31] or the fake account attack. This is because a WECHAT account can be used to abuse
coupon or click fraud [30]. Therefore, there is a risk score for each user’s account. If an account is
just registered, has few or no friends, barely talks, and has no activities other than just downloading
mini-apps, it will very likely be banned, as confirmed in our study.

Therefore, to circumvent Tencent’s account blocking, we notice that we can use premium ac-
counts (i.e., accounts with low risk), and they never get blocked during our experiment. To be
more specific, the premium accounts are referred to as the accounts that (i) were registered months
or even years ago, (ii) have many friends (not just one or two friends), (iii) have active activities
such as posting WECHAT moments and communicating with friends, and (iv) have bound payment
card (debit or credit card) with the account to use WECHAT Pay. By knowing the features of these
premium accounts, we can intentionally use these type of accounts, and additionally performing
more specific real-user type of activities to make them more real-user alike. For example, for a
specific account, although we cannot manipulate the registration date of the account, we can add
more friends and use this account more often to make the account look like a normal account.

4 DETAILED DESIGN OF MINICRAWLER

In this section, we present the detailed design of our MINICRAWLER. At a high level, MINICRAWLER
consists of three key components as shown in Figure 3: (1) Metadata Scraper (§4.1), which takes
a list of keywords as input and produces the metadata of the mini-apps by interacting with the
mini-app searching API, (2) Keyword Generator (§4.2), which performs NLP analysis on mini-app
name and description to generate high quality keywords, and (3) Package Downloader (§4.3),
which takes a list of mini-app identifiers (IDs) as input, and downloads them by executing the
corresponding WECHAT code. In the following, we present the detailed design of these components.

4.1 Metadata Scraper

Recall in S1 (§3.2), we have discovered the mini-app searching API with the concrete values of
the required information (e.g., URL, HTML headers, and body), and therefore we implement a
standalone Python script to interact with this API. Our Python script will (1) read the keywords
from a SQLite database, (2) search the mini-apps from the server, and (3) store the returned result
(i.e., the mini-app metadata) to the database.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:8

Yue Zhang et al.

Reading the keywords. We use a SQLite database to store the keywords and also the
mini-app meta-data. While we can randomly choose a keyword from the database for the
search, we decide to start from the most popular words (i.e., words with higher frequency
in our collected metadata) first since with those words our script is likely able to find more
mini-apps. As such, every time, it will query the top 10 most popular keywords which has
not been selected yet.

Searching the mini-apps. With a provided keyword, the script will interact with the mini-
app searching API to retrieve the matched mini-apps’ metadata. More specifically, it will
construct a HTTP(S) request message based on the keyword, and we use Python library
requests to send it to the WECHAT server.

Storing the results. The server will respond in JSON format which contains a list of mini-
app metadata. An example of such metadata is shown in Figure 4. We can see that, there is
way more information about the mini-app in the response message than a user can see in the
WECHAT GUI, such as appid, the identifier of a mini-app; nickName, the nick name of the
mini-app; labels, the category of the app; evaluate, which means the evaluation score (i.e.,
the rating) of the the mini-app; and so on.

Note that, in the HTTPS request message,

there is field cookie, which is a vital field in the
request message, and the server will refuse to re-
turn data if it is invalid. We obtained an instance
through our dynamic analysis as described in
§3.2. Surprisingly, we found that the expiration
time for this cookie is very long (more than 4
weeks).

4.2 Keywords Generator

This component is responsible for generating
high quality keywords for the searching, and it
directly impacts how many mini-apps we can
reach. As described in S2 (§3.2), we will use both
BFS and DFS searching algorithms to search for

"appid": "wx5054764a3£fdfb3b5",
"appuin": 3508294916,
"description": "{{ERF , IBEERRF ! ",
"docID": "Aa558edb42192aef2cc57faee54089bf23eec8c30",
"extra_json": {
"title": "fHBRFA",
"labels": ["{RERIRG" 1,

"evaluate": "4.5%",

’
"iconUrl": "https://wx.qlogo.cn/mmhead/...",
"jump_path": "/Search/specific/index.html?...",
"nickName": "{JB&Farp",

"path": "",

Fig. 4. An example of the metadata in our response.

the apps (BFS first and then DFS), and correspondingly we have to generate the keywords for both

of them.

e Generating the keywords for BFS. Initially, there is no mini-app metadata. To start the

searching, we need to provide a set of predefined keywords as the seeds. We decide to use the
most frequently used 1,000 Chinese characters that we manually downloaded from website
thn21 [32] as the keywords. With these single character keywords, our BFS algorithm can
cover a large set of mini-apps with different categories.

Generating the keywords for DFS. After finishing BFS, we have obtained rich metadata
about the mini-apps such as their names and descriptions, from which we further generate
more keywords and use them to download more apps. More specifically, our keyword gen-
erator will load the names and descriptions of newly searched mini-apps from the database,
and apply word splitting [20] (segmentation) on them. Since most of the mini-apps are in
Chinese, we use the NLP engine jieba [33], which is specifically designed to split Chinese
words. Similar to our BFS where we select the most frequently used words for the searching,
we also count the word frequencies of the split keyword, and maintain a field to track its
frequency, whenever a new app is added.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:9

4.3 Package Downloader

As mentioned in S1 (§3.2), we have to reuse and dynamically trigger the code inside WECHAT to
download the min-apps by providing the corresponding mini-app IDs obtained in the meta-data.
At a high level, our Package Downloader consists of (1) another Python script that runs on our
own server to manage the downloading tasks by controlling the smartphones through the Android
Debug Bridge (ADB) and (2) an Xposed [34] plugin that runs on the phones to download mini-apps,
and the phones are connected to our server with USB cables.

e The downloading Python script. There are three procedures managed by this script. First,
it will load a mini-app ID from the meta-data for a to-be-downloaded mini-app from the SQLite

database once it detects an idle phone. Second, it will push the list of the mini-app IDs to a

specific location /data/data/com. tencent.mm/MicroMsg/<account_ID>/appbrand/pkg/

(the <account_ID> is a hex string which can be easily observed in the folder) in the idle

phone to trigger the Xposed plugin for the downloading. Third, once the downloading process

has finished, it will pull the mini-app packages from the phone to the computer storage

through ADB. Note that, the mini-app packages are in the private folder of WECHAT, and

therefore we need the root privilege of the phone to pull them.

The Xposed plugin. The plugin is responsible for downloading the mini-apps based on the

provided IDs. As an Xposed plugin targeting WECHAT, it will be loaded to WECHAT process

once WECHAT starts. Since then, the plugin starts to operate. In particular, to make a function

call to the downloading function (i.e., com.tencent.mm.plugin.appbrand.jsapi.l.invokeHandler),
the plugin needs to get the reference of the class instance to which the downloading function

belongs. Therefore, our plugin hooks the class constructor functions which will be called

when initializing a class, and then acquires the instance reference once a constructor is called.
Furthermore, by making a function call to the downloading function with a mini-app ID, the

plugin will trigger the code inside WECHAT to download the corresponding package to a

specific folder on the phone. The plugin will download the mini-apps one by one with the

provided IDs stored in the downloading queue. The phone becomes idle if its downloading

queue is empty.

5 THE PERFORMANCE OF MINICRAWLER

We have implemented MINICRAWLER. In this section, we report the performance overhead of
our MINICRAWLER by running with one server and 5 Android phones. In particular, our server
runs Ubuntu 18.04 Linux operating systems, and has an Intel i7-7700 CPU, 32 GB of memory, and
42 TB storage. The Android phones are Google Pixel XL with Android 7.1 and having WECHAT
version 7.0.3 installed. We launched our Metadata Scraper in August 2020 and it ran for about a
month to collect the metadata, and our Package Downloader executed about four months for the
downloading (note that we did not run the downloader all the time without interruption due to the
fact that the phones were sometimes used in some other non-related experiments).

Metadata Scraper. As a standalone Python script, it directly communicates with the WECHAT
server using HTTPS protocol. Since HTTPS is a stateless protocol, we can use multi-threading to
accelerate our searching process, in a way similar to PlayDrone [11] (which sent 100 requests per
second). However, we do not want to impose too much load on WECHAT servers, and therefore, we
decide to just send at most 2 requests per second. For each request, it took 1,232 ms on average
to send the request and receive the response. Note that our server is located in North America,
and the WECHAT server is located in Hong Kong according to the geolocation of its IP address
we connected. To gain an understanding of how it performs daily, we present a real-time request

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:10 Yue Zhang et al.
35
12500
30
= € 10000
<251 g
g s 7500
2201 ™
K| ‘5 5000
% 151 #*
] 2500
g 104
= 0 T T T T T T T 7 T
51 N S S S\ N S S S N 3 o
PR R R R RN Y RN R
Qo g Q ing ing Qo Ang QS g > 2
O e R K S SR N M M4
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 N N N N A N AR

Fig. 5. Network latency for a single day.

=
]

g
o
L

e o
o
L s

=}
ES
L

Time

Keywords Frequency

Fig. 6. Distribution of the keywords and their frequency.

©

o
L

N
n

of Mini-app Metadata
of Downloads per Minute
IS

o
)

o
o

T T T T T T T T T
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

T T T T
10000 15000 20000 25000

of Searched Keywords

T
0 5000 30000

Fig. 7. Trend of # of discovered mini-apps with theFig. 8. Real-time package downloading speed (# of

increase of # of searched keywords. packages downloaded) for a single day.

and response latency diagram in a 24-hour time window in Figure 5. We can see that the latency
increased between 8AM and 12PM (our time) which is the evening of Hong Kong, when the network
is overloaded. In total, our Metadata Scraper searched 218,182 keywords and discovered 1,395,456
mini-app metadata in a one-month period. To store the collected metadata, it took the SQLite
database 2.2 GB storage space.

Keywords Generator. As described in §4.2, we use both BFS and DFS algorithms to search the
mini-app metadata. We found 138,168 mini-app metadata by just using the 1,000 most commonly
used words in our BFS. For the DFS, our generator produced 217,182 new keywords from the
mini-app metadata. More specifically, a mini-app name can be split into 4.37 words on average,
which takes our NLP engine 21.56 microseconds to process. And a mini-app description can be split
into 29.34 words on average, which takes our NLP engine 65.47 microseconds to process. Based on
the frequency of the keywords, we separate them into two types: words with low frequency (we set
its threshold to be 50) and words with high frequency. We found that, 193,692 keywords (over 88%)
are with low frequency. With our manual analysis, we found that those words are often related to
mini-app names which may contain their brand (e.g., restaurant name, supermarket name). For
the high frequency words, their distribution frequencies are presented in Figure 6, and we can see
that there are around 3,000 very popular keywords, which have more than 1,000 occurrences. To
understand the contribution of the keywords, we present the relationship between the number of
searched keywords and the number of searched mini-apps for the top 30,000 keywords in Figure 7.
We can see that, with more keywords searched, the increase of the total number of mini-apps
becomes slow, because many mini-apps have been already discovered by other keywords.

Package Downloader. Unlike our standalone Metadata Scraper, our Package Downloader has
to be executed within the WECHAT app. To speed up our downloading process, we run 5 Android

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:11

phones, and each of them can download around 6,000 mini-app packages daily. For a single mini-app,
it took a phone 14.79 seconds on average to get a mini-app downloaded. Similar to our Metadata
Scraper, we present a daily downloading behavior for a single phone in Figure 8. We can see that,
our downloader can even download up to 6 mini apps per minute depending on the sizes of the
mini-apps.

While our Metadata Scraper has crawled 1,395,456 mini-app metadata, we only successfully
downloaded 1,333,308 mini-app packages, which cost 2.14 TB storage (each package occupied
1.61 MB on average). There are three reasons why we did not successully download all of these
mini-apps based on their meta-data, according to the error messages thrown by WeCHAT. (i) The
providers of the mini-apps have violated the rules specified by WECHAT, and Tencent has banned
their mini-apps. For example, WECHAT will ban a mini-app if it has lewd content, gory violence,
terrorism, and so on [35]. (ii) Some apps heavily rely on their back-ends to provide services and
store necessary resources. However, their back-ends may get out of services due to the insufficient
balance. When insufficient balance occurs, the services will become unavailable. (iii) The providers
have withdrawn their apps or closed their developer accounts.

6 MEASUREMENT BASED ON CRAWLED MINI-APP PACKAGES

Having collected over one million mini-app packages and their meta-data, we are able to perform
various large scale analysis. In this section, we present our measurement result based on the
mini-app packages, and we leave the result of our meta-data measurement in next section (§7).
While we are able to answer many measurement questions at an aggregate level given the rich
information available in the mini-app packages, we particularly focus on the following questions:

(1) Storage consumption (§6.1), which characterizes how minimal a mini-app really is;

(2) Package complexity (§6.2), which measures the amount of Ul interfaces (i.e., pages) and
resource files, lines of code, number of called functions (i.e., callees), and code complexity of
a mini-app;

(3) Mini-app API usage (§6.3), which measures how often WECHAT APIs are invoked and the
most popular used APIs;

(4) Code obfuscation analysis (§6.4), which measures how mini-apps protect their source code;

(5) Library usage (§6.5), which measures how often a library is used and the popular libraries
among the mini-apps.

6.1 Storage Consumption

Although the mini-app paradigm is believed to save more resources compared with traditional
native apps, it remains unknown how much resource can really be saved (or “how minimal a
wxapkg really is”). To answer this question, we group the mini-apps based on their package size
(using round to hundredth MB precision), and then count the number of mini-apps for each size
category. Figure 9 shows the cumulative distribution function (CDF) of the sizes of mini-apps. We
can observe that the sizes of the mini-apps are ranging from 0.04 MB to 11.73 MB (we have not
observed any mini-apps with size larger than 11.73 MB). The mean size of a mini-app is 1.61 MB
MB, and most of the mini-apps are less than 4.0 MB (in fact mini-apps with less than 4 MB account
for 99.74% of all our collected mini-apps).

In comparison, we also randomly selected 1,333,308 native apps from the dataset that contained
more than two million mobile apps we have collected from Google Play in 2019 in our prior
work BleScope [36]. We compared the size of these native apps with the mini-apps. This result
is presented in Figure 10. We can see that the average size of a native app is 18.01 MB, which
is 11X larger that of a mini-app (i.e., 1.61 MB). Meanwhile, the measured mini-apps have a low

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:12 Yue Zhang et al.

p=1.61,0=0.95 u=18.01,0=21.4

0.8 0.8

o
EY
4
EY

Probability
Probability

I
IS
I
IS

0.2 021

0.0 0.0 4
0.04 2 4 6 8 10 12 0.28 25 50 75 100 125 150 175 200
Size of Mini-app Size of Native App

Fig. 9. Size distribution of the mini-apps. Fig. 10. Size distribution of native apps.

standard deviation (o = 0.95), indicating that the sizes of mini-apps tend to be close to the mean
size, whereas the native apps have a higher standard deviation (o = 21.4).

6.2 Package Complexity

Next, we zoom in each wxapkg and understand its complexity. Note that a package complexity can
be characterized by many dimensions. In this paper, we particularly focus on the dimensions from
the amount of (1) Ul interfaces (i.e., number of pages), (2) resource files, (3) lines of codes (reflecting
the amount of code to be executed), and (4) code complexity (indicating the complexity of the
mini-app logic). Finally, we also made a (5) comparison to compare these dimensions between
the corresponding native apps. We believe these metrics can provide an approximation of how a
mini-app looks like.

(1) Number of Pages. A mini-app often has its user interface (Ul) in a graphic window to interact
with end-users, and each window is called a page in mini-apps. We measured the numbers of pages
contained in a mini-app by first grouping the mini-apps based on their total number of pages, and
then counting the number of mini-apps for each grouped category. Figure 11 shows the cumulative
distribution function (CDF) of the total number of pages contained in the mini-apps. On average,
each mini-app contains 16.1 of pages (there is one app that has the maximum number of pages 433),
and 99.1% of the mini-apps have less than 80 pages and 79.8% mini-apps have less than 20 pages.

(2) Number of Resource Files. A mini-app usually has various resource files such as images,
audios, and videos. Similar to how we measure the number of pages, we also measure the total
number of resource files a mini-app can have, and we show this result in Figure 12. We can see that
on average a mini-app contains 145.24 resource files. We also find that 99.7% of them have less than
500 files, and 78.6% have less than 250 files. There are only 0.12% mini-apps that contain more than
1,000 files, and most of them are games. An example of such a game is the “red and blue”, which
is a Pokemon game containing 1,226 resource files (1,168 of them are images of the Pokemon).

(3) Number of Lines of Code (LoC). The LoC could reflect the amount of code that will (likely) be
executed by a mini-app. Similar to how we measure the number of resource files, we next measure
the LoC of the JavaScript files, which are fundamentally the program code executed by mini-apps.
We report this result in Figure 13. We can see that on average a mini-app contains 15,845 LoC,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:13

0.8
0.8

o
EY

Probability
o
o
Probability

IS
IS

I
IS

0.29

0.24

0.0 4

1 100 200 300 400 1 200 400 600 800 1000
of Pages # of Resource Files

Fig. 11. Distributions of the mini-apps based on the Fig. 12. Distributions of the mini-apps based on the
number of pages. number of resource files.

0.8 0.8

Probability
o o
IS o
Probability

N o
IS o

021 021

0.0

1 50000 100000 150000 200000 250000

of Lines of Code 1 5000 10000 15000 20000

Code Complexity

Fig. 13. Distributions of the mini-apps based on the Fig. 14. Distributions of the mini-apps based on the
number of lines of code. number of code complexity.

which is less than that of a regular iPhone app which has 50,000 LoC [37]. We also find that 51.8%
of them have less than 5,000 LoC, and 31.4% has less than 1,000 LoC.

(4) Code Complexity. Next, we also measure the complexity of the code to reflect how complicated
a mini-app could be. There are a number of algorithms to measure the code complexity, and we
particularly use the McCabe’s cyclomatic complexity [38], which counts the number of linearly
independent paths a program can have, to measure the code complexity of the JavaScript code for
each mini-app, and then we report the aggregated result as other experiments in Figure 14. We
can see that 99.1% of the mini-apps with the code complexity of less than 5,000 and 83.2% with
code complexity less than 2,000, and the average code complexity of a mini-app is 1,191.25.

(5) Comparison to Native Apps. While we have provided an aggregated view on the storage
consumption between mini-apps and native apps in §6.1, this comparison is not one-to-one between
them (e.g., Amazon mini-app vs. Amazon mobile app). Therefore, to provide an in-depth and one-
to-one comparison between mini-apps and native apps, we selected 20 popular mini-apps and
their corresponding native apps to compare them using the aforementioned dimensions. Among
our selected apps, 9 of them are also selected by Lu et al. [6] in their mini-app study, and the rest

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:14 Yue Zhang et al.

App Name Mini-app Native App

AppID Size # Pages # LoC CC # Files Package Name Size # Activity # LoC CC #Files
Airbnb wxc2ada47bcel76219 3.28 31 20,241 1,252 124 cm.aptoide.pt 45.50 37 1,476,663 150,697 21,903
Amazon wx3265fbb010daacc5 4.00 13 54,551 3,807 428 com.amazon.mShop.android.shopping 54.60 145 3,186,264 293,736 29,906
BMW wxe22ecdc7380717d8 3.04 355 49,289 2,976 387 de.bmw.connected.na 51.72 206 1,516,377 137,923 17,995
Burger King wx599036e8b7735aea 2.91 15 25,587 1,477 169 com.emn8.mobilem8.nativeapp.bk 12.63 6 519,291 56,739 5,461
Calvin Klein wx9c72ac56248ced62 3.90 45 41,337 2,968 469 com.calvinKlein.android 28.71 67 1,272,343 135,988 13,919
Channel wxaa2a91a9b866d2f7 0.98 23 9,089 922 207 com.chanel.fashion.public 109.32 15 1,362,957 141,921 12,671
DHL wxef742bdd4c132e3e 2.33 34 36,318 5,394 382 com.dhl.exp.dhlmobile 24.51 7 300,858 35,805 3,914
FedEx wx3542aa451046fb76 2.71 124,702 1,713 118 com.fedex.ida.android 39.91 88 1,272,637 139,014 15,857
Gucci wxd701b7c0f864a732 2.19 19 5,857 563 270 com.gucci.gucciapp 98.71 15 1,038,491 122,975 10,888
Grammarly wx27ed163b52b83974 0.43 9 6,706 1,274 113 cm.aptoide.pt 99.31 35 439,269 55,118 4,836
HP wx6fde234a26a0b79¢ 2.07 116 24,493 3,804 850 com.hp.android.printservice 34.42 37 834,933 99,030 8,091
H&M wxe538b3c2a404630b 3.68 71 39,052 2,596 346 com.hm.oneteam 78.80 45 1,308,095 135,554 14,997
Lacoste wx34ccll6dec74e971 2.77 95 68,420 12,020 952 com.hp.wearable.lacoste 54.70 35 329,927 39,504 6,461
McDonald’s wxe7985a3d339996¢5 2.43 24 33,688 2,051 253 my.com.mcdonalds.delivery 17.70 86 425,672 48,701 5,973
Nike wx096c43d1829a7788 3.18 23 66,865 4,460 680 com.nike.omega 84.01 139 3,168,929 295,441 41,550
PizzaHut wxd5f7974681bcdbce 2.74 20 13,516 1,414 225 com.yum.pizzahut 63.11 12 795,480 81,816 9,073
SEPHORA wx0afe7aac882e6563 4.16 17 48,742 3,367 399 it.sephora.sephoraitaly 82.84 108 2,044,849 217,508 25,097
SHEIN wxb2ea8bc777732d52 2.20 69 44,936 2,517 386 com.zzkko 62.53 206 2,520,067 254,065 25,646
ToryBurch wx9b8b9a92c338e1b3 0.95 35 29,473 3,500 160 com.toryburch.connected 22.10 105 710,291 75,625 11,390
‘Walmart wx09d1aae1bd6787f8 2.70 43 24,480 1,694 165 com.walmart.android 103.26 297 4,020,255 329,205 42,414
ZARA wxd95a72¢5f595b6a3 2.47 10 44,590 7,904 237 com.inditex.zara 47.52 132 1,735,822 188,049 21,247

Table 1. Comparison between mini-apps and native apps. Note that CC stands for code complexity; also
native apps do not use “Page” to refer their Uls, and therefore, we count the number of activities (an activity
can be associated to a graphic window of a native app).

of them are randomly selected. To avoid having any potential biases, we installed and manually
checked both the mini-apps and the native apps to make sure they provide the same or similar
functionalities. For example, Amazon have multiple native apps (e.g., Amazon Prime Video is used
to watch movies while Amazon shopping is used to shop online), and we selected the shopping
mini-app from Amazon for the comparison.
The detailed result of our one-to-one com-
parison is presented in Table 1. Note that we ob-
tained Javascript code after unpacking a mini-

app, and decompiled Java byte code after un- "
packing a native app. We then use these code os
to count the number of lines and measure their

code complexity. Also, note that the McCabe’s 2061
cyclomatic complexity [38] is programming lan- g
guage agnostic. This is because this algorithm & 041
counts the number of linearly independent

paths that a program can have regardless of the 1
programming languages. In a nutshell, we can b0l

1000 2000 3000 4000 5000
of API Calls

-

observe from Table 1 that mini-apps not only
save the storage resources but also tend to have
fewer number of pages, fewer number of LoC,
fewer number of files, and less complex code.
We then reverse engineered these apps and
found three reasons of why the mini-apps are
smaller and have less complex code. (i) To offer an instant and installation-free experience for
end-users, mini-apps are supposed to only contain the core business logic of a full version the
native app. Therefore, some functions are not available at the mini-apps. (ii) Tencent recommends
that resources files such as images or videos should not be included as one part of the mini-app.

Fig. 15. Distributions of the mini-apps based on num-
ber of called APls.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:15

Instead, these resource files should be located at the remote server, and mini-apps could download
them whenever needed. This practice could have reduced the size of the mini-app and also its
number of files. (iii) Moreover, WECHAT has many off-the-shelf built-in models for mini-apps to
achieve sophisticated functionalities. For example, the mini-apps can easily implement registration
and login interface using the APIs provided by WECHAT with just one line of JavaScript code.

6.3 Mini-App API Usage

Next, we characterize the semantics (i.e., the meanings) of the mini-apps. However, to truly capture
a program’s semantics without execution is challenging, we can only approximate its meaning
through static analysis. One dimension that can be used to reflect the meaning of an app is to
look at the invoked APIs. Therefore, in this measurement, we seek to analyze (1) how often an
API (regardless of its name and its category) is called by a mini-app (i.e., the frequency of an API
call), (2) what are the most popular APIs (based on the names) and how often they are used by a
mini-app, (3) what are the most popular API categories and similarly how often they are used, and
(4) finally whether there are any privacy sensitive APIs and if so how they are being used.

(1) How Often a Mini-app Calls an API. Similar to how we measured the package complexity by
using the number of lines of code of a mini-app, we also measured the number of API invocations for
a minij-app. Figure 15 shows the CDF of the number of API invocations. We can see that mini-apps
tend to invoke a lot of APIs, and on average, the API invocation is appeared 328.9 times based on
the static analysis. We also find that 99.1% of the mini-apps has less than 1,000 API invocations.

(2) How Often a Mini-app Calls a Specific API. Having measured the API invocations in gen-
eral regardless of their names and categories, next we measure the usage for each specific APL
To this end, we first measure the number of apps that have invoked the specific APIs, and then
measure how often this specific API is invoked by a particular app.

e Number of mini-apps that invoke the specific APIs. We first group the specific APIs
based on their names (there are in total 580 APIs provided by WECHAT SDK [22] at the time
of this writing), and then count the number of mini-apps that have invoked each specific API
based on its name. Since there are in total 580 APIs, we cannot show the result for all of them.
Instead, we only present the top 20 APIs that have been invoked by the mini-apps, and this
result is presented in Figure 16. We can see that the three top used APIs are all debugging
related, and they are API console.log (1,326,992 out of 1,333,308, i.e. 99.98%, mini-apps invoked
it), console.warn (used by 1,326,565 apps with 99.49%), and console.error (used by 1,326,305
apps with 99.47%). Also, 1,216,326 (91.26%) mini-apps have invoked API wx.request to send
HTTPS requests to their back-ends, indicating that most mini-apps have their own back-
ends. Other than the top 20 APIs that have been invoked by the mini-apps, we also find
interestingly that wx. requestPayment, which has been used by 825,496 (61.91%) mini-apps
to allow WECHAT users to make mobile payments for online transactions.

e Number of times for a specific API invoked by a mini-app. One mini-app may call a
specific API multiple times. For example, API console.log can be invoked whenever the
developers want to log the status of their mini-apps. Therefore, we measure how often a
specific API is invoked by a mini-app. In particular, we measure the average number of
specific APIs called by a mini-app statically (without running the mini-apps). Figure 17 shows
this result. Among all the APIs, we can notice that console.log is the most invoked API (on
average, each mini-app calls it 33.15 times). The second most API is wx.nativegateTo (13.90
times). It is surprising to know that on average, each mini-app calls API wx.makePhoneCall

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:16 Yue Zhang et al.

le6
3541
®
1 3
1.2 2 301
1.0 % 251
g g
5081 S 201
s &
Z 064]
5 © 15
#* L
0.4+ $ 101
£
0.24 s 5]
5
0.0 *
. oA
S8 S ERC L2 L F O LHFTL LI LOD O LN &
LRSI EIILEI IS FT LT T O5SL L F LT OIS OLEFT LSOO L
S LSS ES oS SESTSIES TELESTSETETESEEGSFS
S &¢I O o S X NSRS S oL o & s S & & g @
S FFIRPGT IR IO TIPS 9% & SO S IS TSI EF Iy o8&
ISE SIS F&Ee o & PO 0L o 9K IQIPVARN Sy S VO SJZTED
SLEFIIIINSSE S5 S S5 LSsSITFrLEFSITIFTSCISEL
SIS RSER S AP I~ AN S OS5 SISO SPFT TSI &S’ 9 O INPS
S O RN AN 5 LS ES 3 5o 9L 2?3 SOLSEFFIT IS LFO>SL
GO FeFegFs Feesesiss F& OSF Fe5TEFESTFEY
xS & F VI B & & &8 SN
& & N g e S > F&e
< s F N §

Fig. 16. Top 20 APIs that have been invoked by the Fig 17, Top 20 APIs based on the number of statically

mini- . ; ; i
apps invoked times by a mini-app.
le6
1.44 _
z
< 102 4
1.2 L
23
2101 &€
El sz
2 0.8 w7 101
= T o
= <=
w 0.6 “ ©
5 &g
% g
0.44 gﬁ
S 00
0.2 5 10
#*
. I S
TN SRS SIS A AN O R ORI
SIS SIS SIS N Y e s T e P e S8 o v o p 2
OIFT I LI ESTSSEEEEST DL & SOPIFTEFILFSSTEEITES PSS
S CEITRIIT LS F I FISTAKLQO STHFERLIITITEFE Ay EesS
§ TEF L8 FFFTSy T T SFFTTEOgs FTE SIS
S I o N 3 S & o N 9
Q DA
&

Fig. 18. The number of mini-apps that invoke APIs in Fig. 19. The number of times for APIs in specific cate-
specific categories. gories invoked by a mini-app.

3.40 times. We manually investigated some of these mini-apps, and found that mini-apps
often use it for customer services (and each service could have different numbers).

(3) Specific API Category Measurement. Recall that there are 42 API categories as described
in §2, next we measure the usage of specific API categories similar to how we measure the usage of
specific APIs.

e Number of mini-apps that invoke APIs in specific API categories. Since we have al-
ready counted the number of mini-apps that invoke each specific API, we just need to group
these APIs based on their categories. Figure 18 shows this measurement result. We can
observe that the APIs in the debugging category is the most popular one (1,332,992 out of
1,333,308, i.e. 99.98% mini-apps invoked the APIs in this category). The second mostly used
APIs belong to the UI category, and there are 1,173,328 (88.00%) mini-apps that call the API
in this category to control the Ul elements, including showing Toasts (i.e., wx . showToast)),
displaying animations (wx.createAnimation), and so on.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:17

APIs Type Permission Name Sensitive Data or Resource Accessed
wx.requestPayment App specific data N/A Payment
wx.getUserInfo App specific data scope.userInfo User profile
wx.getWeRunData App specific data scope.werun Gait & Sports
wx . chooseAddress App specific data scope.address Billing Address
wx.chooseInvoice App specific data scope.invoice Invoice
wx.chooseInvoiceTitle App specific data scope.invoiceTitle Invoice
wx.getLocation System resources scope.userLocation Location
wx.chooselocation System resources scope.userLocation Location
wx.openLocation System resources scope.userLocation Location
wx.startlLocationUpdateBackground System resources scope.userLocationBackground Location
wx.createCameraContext System resources scope.camera New Photo & Video taken by Camera
CameraContext. takePhoto System resources scope.camera New Photo & Video taken by Camera
wx . scanCode System resources scope.camera QR Code Scanned by Camera
wx.startRecord System resources scope.record Audio Record
wx . saveImageToPhotosAlbum System resources scope.writePhotosAlbum Photo
wx.saveVideoToPhotosAlbum System resources scope.writePhotosAlbum Video
wx . getPhoneNumber System resources N/A Phone number
wx . chooseImage System resources N/A Photo in Album
wx.chooseVideo System resources N/A Video in Album
wx . openBluetoothAdapter System resources N/A Bluetooth
wx.getBLEDeviceCharacteristics System resources N/A Bluetooth
wx.getConnectedBluetoothDevices System resources N/A Bluetooth
wx . getBluetoothDevices System resources N/A Bluetooth
wx.getBLEDeviceServices System resources N/A Bluetooth
wx.readBLECharacteristicValue System resources N/A Bluetooth
wx.getWifilist System resources N/A WiFi list
wx . openDocument System resources N/A Document Files
wx.getClipboardData System resources N/A Clipboard Data
wx.addPhoneContact System resources N/A Contact
FileSystemManager.readFile System resources N/A Files
FileSystemManager.readFileSync System resources N/A Files

Table 2. Privacy sensitive APIs provided by WECHAT.

e Number of times for APIs in specific API categories invoked by a mini-app. We
measure the popularity of specific API categories based on how often the APIs in the corre-
sponding category are invoked. This result is shown in Figure 19. We can notice that the APIs
in the Ul category get used most often (they are called 64.30 times), and the second most is for
Debugging (50.88 times), followed by Caching (44.15 times). Surprisingly, through the analysis
of the number of API calls in specific API categories, we were able to obtain some interesting
results. In particular, we found some developers may mistakenly control the smartphone sen-
sors. For instance, we observed there are 23,442 mini-apps called API wx.startAccelerometer
to start the accelerometer but only 18,513 of them called wx.stopAccelerometer) to stop it.
Similarly, 453 mini-apps invoke wx.startGyroscope to start the Gyroscope but only 278 of
them invoke wx.stopGyroscope.

(4) Privacy Sensitive API Measurement. Next, we measure whether there are any privacy
sensitive APIs, and if so, how they are used in practice.

e Identification of Privacy Sensitive APIs. Tecent provides 580 APIs in total for mini-app
programming currently. We manually went through all of them to identify the ones that are
deemed privacy sensitive. An API is privacy sensitive if it can fetch the sensitive information
from the host app or the Operating System (though sometimes it requires permissions
authorized by the users to do so). In total, we identified 31 privacy sensitive APIs, as shown
in Table 2. In particular, we identified 6 APIs (row 1 — 6) that can access app-specific data
such as user profile or billing address (5 of these accesses require permission authorization
from end-users, as illustrated in the Scope column in Table 2); 25 APIs (row 7 — 31) that
can access system resources such as Bluetooth, camera, and user location. Interestingly, we
can notice that the app-specific data tends to be more sensitive when compared with the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:18 Yue Zhang et al.

system resources. For example, WECHAT allows the mini-apps to access the user profile,
which contains the name (or nickname), gender, and residential location.

e Number of mini-apps that invoke the specific privacy sensitive APIs. Since we have
already counted the number of mini-apps that invoke each specific API in §6.3(3), we just
need to select these privacy sensitive APIs from the previous results, as shown in Figure 20.
We can see that the most popular privacy sensitive API is wx.requestPayment (used by
825,496 apps with 61.91%), followed by wx.getLocation (used by 704,683 apps with 52.8%)
and wx.openLocation (used by 674,982 apps with 50.62%).

6.4 Code Obfuscation Analysis

Since mini-apps use Javascript code, which is
human-readable by default, they have to rely
on code obfuscation to thwart the reverse engi- 10° 4
neering attempts. To this end, WECHAT pro- 10°1
vides a built-in JavaScript obfuscator called
Uglify for mini-app developers to obfuscate
their JavaScript code. By using this obfuscator,

. . . AR I R ARNARANRNRRARART
the names of JavaScript functions and variables e o e et s s
. . . EELSTITSIISSSSEFSLETEFS
are all replaced with meaningless words. While SEEFEESTSFESSTESTESE
. . . §FIFTFSITLE S CEFTSELS S
the use of obfuscation option is enabled by de- SRS TS TESSSIEESEF
. .. Ty TIFTo LI S &
fault, there might be mini-app developers who & S F &5 £68 8
. 5] S & N
do not attempt to protect their code or may & S @5’05 g
. . . . & L
have mistakenly turned off this option. In this & ok
S

measurement, we seek to identify the mini-apps
that do not use obfuscation. Since fundamen-
tally Uglify changes the names of functions
and variables by shortening them to just few
(often less than 3) alphabetic letters (e.g., “a”,
“ab” or “abc”), the lengths of the function and variable names of a mini-app can reflect the usage of
Uglify. As such, we can just simply search and count their length to determine whether a mini-app
has used obfuscation. As shown in Figure 21, we found that the average length of all variable and
function names is 2.37, indicating that most of the mini-apps have enabled the obfuscation option.
We also observed that about 4.6% mini-apps have their average length of the variable names longer
than 4, indicating very likely these mini-apps have not used Uglify. We have randomly sampled
100 such mini-apps, and confirmed this observation—indeed they are not obfuscated.

Fig. 20. Sensitive APIs that have been invoked by the
mini-apps

6.5 Library Usage

Next, we analyze the library usage in mini-apps. Note that WECHAT allows a mini-app to in-
clude 3rd-party libraries by enabling the package management using the NPM feature' during the
development. With NPM, developers are able to include various libraries with different built-in
functionalities through an API named require. For example, mini-apps can use md5 function from
library md5 to generate the message digest. By inspecting the library name based on require, we
can easily identify the included libraries of a mini-app. As such, in this measurement, we focus
on (1) how often a library (regardless of its name and its category) is used by a mini-app, and (2)
what are the most popular libraries (based on the names).

INPM is a package manager for the JavaScript programming language, and it allows developers to easily share and reuse
JavaScript code [39].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:19

0819 0.98 1

o

o
o
©
3

Probability
Probability

o

IS
o
©
B

0.24

0.0

2 4 6 8 10 12 14 16 0 20 40 60 80
Lengths of mini-app variable names # of Libraries Used by a Mini-app

Fig. 21. Distributions of the mini-apps based on the Fig. 22. Distributions of the mini-apps based on the
length of variables. usage of libraries.

(1) How often a library is used by a mini-app. Among the total 1,333,308 mini-apps, we have
identified that most mini-apps actually do not use library at all, and only 120,031 (9%) of them have
used libraries. The total number of unique libraries used by these mini-apps is 2,866 (based on
the library name). We group the number of libraries used by mini-apps, and plot the cumulative
distribution function in Figure 22. We can observe that on average each min-app may require
around 0.21 libraries. However, 3.89% of the mini-apps require one library and 0.62% mini-apps
require more than 3 libraries. There is one very unusual mini-app that has used 94 libraries.

(2) What are the most popular libraries. We then measure the most popular libraries used by
mini-apps. While in total there are 2,866 used libraries, we only measure the usage for the top 20
most commonly used libraries. We report this result in Figure 23. We can see that these top used
libraries vary from reactive development Toolkit (e.g., vertx, which is used by 63,968 mini-apps,
accounting for 53.29% of all mini-apps that have used libraries) to utility function libraries including
base64 (13,266 with 11.05%) and md5 (12,162 with 10.13%). We further examined how mini-apps
use these libraries, and found most of the time the libraries just provide additional encapsulation.
For example, we found that 695 and 155 mini-apps have used the library wxApi and library wxPage,
respectively, and these two libraries do not have any add-on functionalities but just encapsulation
of existing APIs, allowing developers to simplify their mini-app programming.

7 MEASUREMENT BASED ON CRAWLED MINI-APP META-DATA

We have measured the mini-apps based on their packages in §6, and in this section we present our
measurement result based on their meta-data. While the meta-data contains a variety of information
about the apps, as shown in Figure 4, including such as the appid, description, labels (i.e., the
app category), nickName, and evaluate score (i.e., ratings), we decide to only provide an aggregated
view of the apps according to their categories (§7.1) and ratings (§7.2).

7.1 Categories of Mini-apps

According to the meta-data we have crawled, there are in total 274 categories defined by WECHAT.
We count the number of mini-apps in each category and sort them in descending order based
on the mini-apps contained in each category. Figure 25 shows the cumulative distribution of
categories, where each integer at the x-axis represents a specific category. We observed that the
top 20 mini-app categories accounts for 98.4% of our dataset. To further investigate the what these

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:20 Yue Zhang et al.

300000
600001 250000

50000 -

N
S
S
S
S
S

40000 -

of Miniapps
-~
&
3
8
8
S

30000 -
100000 4

of Miniapps

20000 4
50000 4

10000

0 Tyt o e At e SSTELLELE Segs d§‘$$ ST
& S o > 2 & £ 3 & R L S & & > o N L & S
FSSEEFFSFSFLESEFRELS FESFIESEFEFSETESIs T8
PEELEITS "o g o S GRS FSIFeEFETs "g887%8 ¢
vE N g g Fgdge ¢ g8 §°9¢ § &
5 S P & P
S ’ <

Fig. 24. Top 20 mini-app categories.
Fig. 23. Top 20 libraries used by mini-apps.

0.8 081

Probability
o
o
Probability
o
o

°
IS

0.44

0.24

0.0

T T T T
0 50 100 150 200 250

Ney Category 0 1 2 3 4 5

Ratings of Mini-app

Fig. 25. Distribution of the usage of each specific cat-
egory.

Fig. 26. Distribution of the mini-app ratings.

mini-apps are, we zoom in the top top 20 mini-app categories as shown in Figure 24. We can see that
most mini-apps fall into the category of education (16.81%), information (14.28%), health products
(8.43%), decoration (6.85%), fruit selling (5.41%), furnishing (4.68%), gaming (4.25%), and so on. It is
interesting to notice that the education category has the largest number of mini-apps. We further
manually checked the apps in this category and found there are a variety of education related
mini-apps, such as Service portals for specific colleges and universities, Service portals for paid or
free curriculum materials, and Emulators for training particular skills (e.g., stock trading).

7.2 Ratings of Mini-apps

To create a better environment for the mini-app community, WECHAT has provided a feedback
mechanism for mini-apps users to evaluate their mini-apps. Evaluation criteria is designed on a
five-point scale, and each mini-app can have a specific score to reflect its quality. However, not all
the apps’s rating is available, and only when an app has been rated by sufficient amount of users
can we obtain its rating. Therefore, in our metadata, we only observed that 332,097 mini-apps have
their ratings and our measurement is only for these apps. Although many of the mini-app ratings
are not available, we believe that the current rating measurement is representative. This is because

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:21

SIIEIIITT ST ET

5.

o

4.

o

4.0

3.5+
3.0
254
2.0 —+
3 > o > 9 ’ 2 @ > > > S & 'S o > S &)
S ELEFTEFELHL s FsEISTSEES
O A S Y O AN - RS
& 3 & N & & & T & S S N & NG £ > ©
S < S & & 'S < S 9
L < & S « & © QQW «w g £y S &é
£ d ¢

Fig. 27. The Top 20 best rated mini-app categories and their mean ratings.

that only when enough users rate the mini-app, the rating of the mini-app are visible to other users.
The mini-apps without ratings are likely to be the less popular mini-apps, and our measurement is
thus based on the popular mini-apps and they are reviewed by the majority of the users.

Similar to many of our other measurements, we first group the mini-apps based on their ratings,
and then count the numbers of the mini-apps based on their specific rating categories. As shown in
Figure 26, 99.2% of these mini-apps have a rating higher than 2.5, and 31.1% even with rating higher
than 4.5. We believe this is likely due to the incentive mechanism provided by WECHAT, motivating
the developers to provide better services. For instance, WECHAT will reward the operators or
developers with privileged access to certain program or increased visibility when their app rating
reaches a higher score, and penalize those with lower scores (e.g., their mini-app may become
inaccessible for a period of time) [40].

Recall in our previous measurement (§7.1), 98.4% of the mini-apps fall into the top 20 categories.
Therefore, we would like to understand the quality of these mini-apps based on their available
ratings. Specifically, as shown in Figure 27, we present a box-plot of the apps in the top 20 categories
and report their mean values (the blue circles) and middle bars. We can find that the average score
of the apps in the top 20 categories is 4.48. Particularly, mini-apps fall into the Hare Salons category
has the highest mean rating score (4.62), whereas games have the lowest (3.47).

App ID App Name Category Rating App ID App Name Category Rating
wxb6bf7ad9d01606{3 Zhili Beauty 5.0 wx73b18fbf286b76¢3 My 40-Meters Knife Game 1.3
wxfe919da247ca0ce7 Dimei Healthy Product 5.0 wxea2ccd29615c9333 My Life Game 1.3
wx45cfa7fdcc04ee59 Chunli Juice & Milk Tea 5.0 wxb26aa7a38df3882f Twenty One Game 1.3
wxc6fe31db7712ed76 Taoxian Group Buy 5.0 wx1bed0245e56155ec WiFi Password Inquiry Info Query 13
wx4cab5b5364df446a Baby’s Dream Healthy Product 5.0 wx771f8c822972dfbc Protect QiuQiu Game 1.2
wx2f51d7eba8e7cd14 Puti Education 5.0 wxcaf44cf5c938c4e8 War-Fire Game 1.2
wx50b4105f2b81017f Bianli Education 5.0 wx4bf77¢65623b2b17 Follow Me Game 1.2
wx14ebeb7a39ea80c9 Reading Space Education 5.0 wx22d25ec6a8ef4266 Cloud WiFi Info Query 1.2
wx32aecf0ee625fcde Fixing Info Query 5.0 wx17e7bd3814f94db4 Renting Hose Renting 1.2
wx3e3d96e8f3bc9853 E Home Decorating 5.0 wxf3981d7be84c6801 Supper Kan Game 1.2
wxd0Oc34c24be39f757 LangDa Glasses Beauty 5.0 wxc0de602e8de8df8f AnShun Beauty 1.2
wx6cd9d9alce3f65a9 BYN BaiYou Baby Products 5.0 wxd83fb186bbdof1d4 Car Bank Bank 1.1
wx1df06a1c55247¢95 WanWei Xin Supper Market 5.0 wxb51c2c10ald7e3e3 Happy Glass Game 11
wx5a794b6306d01f63 Western China # 1 Restaurant 5.0 wxd9a5c¢1d0140c0424 Cloud Game 1.1
wxd47¢82dd05¢5563e Angel Hospital 5.0 wxa8d7e5c4015105¢cd Tuzhong Office 1.1
wx76306ec09dda16d6 CBS Broadcasting 5.0 wx05dc48f13a43f5c0 SanGuo Da Game 1.0
wxf07{8fc0fdb0e6c4 HuangPu Education 5.0 wx7b03473f23f1d1ce Yin Game 1.0
wx2{70b4554420038d DingDing Car Ride-hailing 5.0 wx6553e45faa9952b0 I'm Gang Game 1.0
wx1a692c61755¢9fe9 Zhongyinjie Education 5.0 wx88facc1d5d585¢99 Bao Game 1.0
wx0b542aa15bb0f443 Eagle King Fruit Selling 5.0 wx5439114b332007da FGO Info Query 1.0

Table 3. Top 20 best rated mini-apps

Table 4. Top 20 worst rated mini-apps

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:22 Yue Zhang et al.

The best and worst rated mini-apps. To understand why the mini-apps have higher (or lower)
rating scores, we further manually checked 20 mini-apps with the highest scores and 20 mini-apps
with lowest scores. Specifically, there are 5,186 mini-apps with 5.0 score, and we randomly selected
20 from them as the best mini-apps, and presented them in Table 3. Next, we found that 131
mini-apps with scores lower than 1.3 (including 1.3), and among them, 16 mini-apps have scored
lower than or equal to 1.2. Therefore, we selected these 16 apps first, and then randomly selected
4 other apps with score 1.3 as the top 20 worst rated mini-apps as shown in Table 4. It can be
observed from Table 3 that many best rated mini-apps are from the education category, which
is reasonable since most mini-apps fall into this category. Meanwhile, these mini-apps usually
have well designed Uls. However, from Table 4, we can observe that most of the worst mini-apps
are from the Game and Information Query categories. We then tested some of these Games and
observed they contain heavy advertisement. For the three Information Query mini-apps, we tested
two of them (i.e., WiFi Password Inquiry and Cloud WiFi) and found they do not always work
when provided the SSID to query the corresponding password.

8 DISCUSSION

Limitation and Future Works. While we have obtained a number of aggregated results on the
mini-apps such as their size distribution and API usage, our measurement is certainly not perfect
and there are many avenues to improve it. For instance, we could have performed a periodical
analysis on the meta-data to measure when an app is published in the market and when it disappears,
which can provide a longitudinal view of the market-available apps. Second, currently we only
crawled the meta-data for about 1.39 million mini-apps, and we can certainly keep improving our
keyword lists to obtain other uncovered apps. Finally, there will be many other interesting studies
such as detecting the bugs or vulnerabilities in the mini-apps. We leave these to future research
efforts. Meanwhile, to have more community’s interests (and also in support of the open science),
we have released the source code of our MINICRAWLER so that other researchers in the community
can also investigate the research questions of their interests with mini-apps.

Ethics. We did take ethics into the highest consideration when conducting this measurement study.
First, we have followed the community practice of data crawling (such as PlayDrone [11], and
other web crawlers [41]). Second, we did not attack any WECHAT accounts, and only used our
own accounts to query the WECHAT server and crawl the data. Third, we also did not attack the
WECHAT servers (no denial of service) and meanwhile we limited our number of requests per
seconds to just two while issuing the meta-data query (note that PlayDrone used 200 requests per
second). Fourth, we have only made our MINICRAWLER public available, but we will not release
the collected mini-apps to protect the privacy and also the intellectual property of the mini-apps
if there are any. Finally, we have also been engaging with Tencent by actively disclosing the issues
we have found such as the unexpected long live session tokens, and also the developers’ improper
practices on controlling the smartphone sensors (e.g., only starting the sensors without stopping it).

9 RELATED WORK

There has been a large body of research measuring the native mobile apps from either mobile
appstore or pre-installed in Android firmware. For instance, PlayDrone [11] conducted the first
large-scale characterization with over one million Android apps available on Google Play including
their evolution, library usages, and app clones. Complementary to PlayDrone, Wang et al. [14]
measured the app similarities in 3rd-party appstores (other than Google play). Ali et al. [42]
compared app ratings and prices on both Apple AppStore and Google play with 80,000 apps. Wang

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:23

et al. [43] investigated the removed 791,138 apps from Goolge play to explore the reasons of the
removal. Additionally, Wang et al. [44] analyzed over 1.2 million apps and 320,000 developers to
understand their app development practices. With respect to the pre-installed apps, DroidRay [45]
scanned 24,009 pre-installed apps from 250 Android firmware, and discovered that 1,947 (8.1%)
pre-installed apps have signature vulnerability and 7.6% of the firmware contain malware. Most
recently, Elsabagh et al. [46] analyzed 331,342 pre-installed apps in 2,017 Android firmware images
and identified 850 unique privilege-escalation vulnerabilities.

Unlike native mobile apps which have been intensively studied, there is only one work [6] that
has looked into the issues with the mini-apps so far. In particular, Lu et al. [6] conducted the first
systematic study of how WECHAT manages the system resources (i.e., the permission model of
WECHAT), and discovered the security flaws such as stealthily privilege escalation to access camera,
photo gallery, or microphones without user’s awareness. In addition, they also identified other
possible attacks such as the phishing attacks with mini-apps due to the fact that mini-apps often
run in the fullscreen window, which can trick the user into believing a mini-app is a native app.

10 CONCLUSION

We have presented MINICRAWLER, a scalable mini-app crawler that is able to automatically download
mini-apps from WECHAT server. We describe how we have addressed various challenges encoun-
tered when building our crawler. We have used it to download more than one million mini-apps.
With them, we have performed a large scale measurement study and discovered a number of inter-
esting aggregated results including a mini-app is 11x smaller than a native app on average, it often
has hundreds of API invocations, most of the mini-apps are obfuscated, the largest category of the
mini-apps is in the education category, and the apps in this category also tend to have higher ratings.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers and also our shepherd Dr. Zihui Ge for their very
helpful comments. This work was partially supported by NSF awards 1834215 and 1834216.

REFERENCES

[1] C.Lee, “WeChat launches mini-app feature,” https://www.zdnet.com/article/wechat-launches-mini-app-feature/, 01
2017, (Accessed on 04/21/2021).

[2] L. Eadicicco, “How facebook, Apple, Google copied china’s WeChat messaging app - business insider,”
https://www.businessinsider.com/facebook-apple-google-copied-wechat-app-trump-executive-order-2020-8, 08 2020,
(Accessed on 04/21/2021).

[3] K. Leswing, “Three ways to get iPhone software without using Apple’s App Store,”
https://www.cnbc.com/2020/09/01/how- to-get-iphone-software-without-using-apples-app-store. html, 9 2020,
(Accessed on 04/21/2021).

[4] A.Ha, “Daily Crunch: Snapchat is getting mini apps,”
https://techcrunch.com/2020/06/12/daily-crunch- snapchat-is- getting-mini-apps/, 06 2020, (Accessed on 04/21/2021).

[5] “How brands are using WeChat mini programs,” https://mavsocial.com/wechat-mini-programs-for-brands/, 2018.

[6] H.Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang, “Demystifying resource management risks in
emerging mobile app-in-app ecosystems,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 569-585.

[7] “Number of monthly active WeChat users from 2nd quarter 2011 to 3rd quarter 2020,
https://www.statista.com/statistics/255778/number- of-active-wechat-messenger-accounts/, 3 2020, (Accessed on
04/21/2021).

[8] “WeChat data, insights and statistics: user profile, behaviours, usages, market trends,”
https://wechatwiki.com/wechat-resources/wechat-data-insight-trend-statistics/, 03 2019, (Accessed on 04/21/2021).

[9] “The total size of all subpackages of a Mini Program cannot exceed 12 MB,
https://developers.weixin.qq.com/miniprogram/en/dev/framework/subpackages.html, 06 2020, (Accessed on
04/21/2021).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

14:24 Yue Zhang et al.

[10] A. Rafi, “Android app size limit increased from 50 MB to 4GB,”
https://www.androidguys.com/news/android-app- size-limit-increased-from-50mb-to-4gb/, 5 2012, (Accessed on
04/21/2021).

[11] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google play,” in The 2014 ACM international conference on
Measurement and modeling of computer systems, 06 2014, pp. 221-233.

[12] S. Seneviratne, H. Kolamunna, and A. Seneviratne, “A measurement study of tracking in paid mobile applications,” in
Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks, 6 2015, pp. 1-6.

[13] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile app ecosystems: A longitudinal measurement
study of google play,” in The World Wide Web Conference, 09 2019, pp. 1988-1999.

[14] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li, J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A
large-scale comparative study of chinese android app markets,” in Proceedings of the Internet Measurement Conference
2018, 2018, pp. 293-307.

[15] W. Liu, G. Zhang,]J. Chen, Y. Zou, and W. Ding, “A measurement-based study on application popularity in android and
ios app stores,” in Proceedings of the 2015 Workshop on Mobile Big Data, 2015, pp. 13-18.

[16] C. A.Kardous and P. B. Shaw, “Evaluation of smartphone sound measurement applications (apps) using external
microphones—a follow-up study,” The Journal of the acoustical society of America, vol. 140, no. 4, pp. EL327-EL333,
2016.

[17] “WeChat mini program development guide,” https://developers.weixin.qq.com/miniprogram/en/dev/framework/, 08
2017, (Accessed on 04/21/2021).

[18] “Reference documentation for mini program frameworks,”
https://developers.weixin.qq.com/miniprogram/en/dev/reference/, 08 2020, (Accessed on 04/21/2021).

[19] “WeChat account protection,” https://help.wechat.com/cgi-bin/micromsg-
bin/oshelpcenter?opcode=2&lang=en&plat=android&id=170417vMBnEB170417InAF36&Channel=helpcenter, 08 2020,
(Accessed on 04/21/2021).

[20] H.Liu, P. Gao, and Y. Xiao, “New words discovery method based on word segmentation result,” in 2018 IEEE/ACIS 17th
International Conference on Computer and Information Science. IEEE, 2018, pp. 645-648.

[21] “Introduction to android hook framework Xposed,”
https://programmer.ink/think/introduction- to-android-hook-framework-xposed.html, 06 2019, (Accessed on
04/21/2021).

[22] “WeChat API categories,” https://developers.weixin.qq.com/miniprogram/en/dev/api/, 03 2020, (Accessed on
04/21/2021).

[23] “Directory structure (offical document)
https://developers.weixin.qq.com/miniprogram/en/dev/framework/structure.html, 03 2020, (Accessed on 04/21/2021).

[24] “WXML,” https://developers.weixin.qq.com/miniprogram/en/dev/reference/wxml/, 03 2020, (Accessed on 04/21/2021).

[25] “WXSS,” https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/wxss.html, 03 2020, (Accessed on
04/21/2021).

[26] “Configuration of server domain name (WeChat official document),”
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html, 2020.

[27] A.Mahajan, Burp Suite Essentials. Packt Publishing Ltd, 2014.

[28] “Dex to java decompiler,” https://github.com/skylot/jadx, 06 2015, (Accessed on 04/21/2021).

[29] S.Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “ASM: A programmable interface for extending android security,”
in 23rd USENIX Security Symposium, 2014, pp. 1005-1019.

[30] “Account security,” https://007.qq.com/account-guard.html? ADTAG=index.block, 01 2020, (Accessed on 04/21/2021).

[31] C. Chen, K. Wu, V. Srinivasan, and X. Zhang, “Battling the internet water army: Detection of hidden paid posters,” in
2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 1EEE, 2013, pp. 116-120.

[32] L. Zhong, “Ranking of the most commonly used 1,000 chinese characters,” https://www.thn21.com/base/zi/17300.html,
(Accessed on 04/21/2021).

[33] “'Jieba" (Chinese for "to stutter") chinese text segmentation: built to be the best python chinese word segmentation
module” https://github.com/fxsjy/jieba, (Accessed on 02/01/2021).

[34] “Xposed,” https://repo.xposed.info/, (Accessed on 02/01/2021).

[35] “Weixin mini program platform operation rules,” https://developers.weixin.qq.com/miniprogram/en/product/, 2020.

[36] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprinting of vulnerable ble iot devices with static uuids from
mobile apps,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019, pp.
1469-1483.

[37] J. Desjardins, “How many millions of lines of code does it take?”
https://www.visualcapitalist.com/millions-lines-of-code/, 02 2017, (Accessed on 04/21/2021).

[38] T.J. McCabe, “A complexity measure,” IEEE Transactions on software Engineering, no. 4, pp. 308-320, 1976.

»
5

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

A Measurement Study of Wechat Mini-Apps 14:25

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

R.E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and A. Ihara, “Towards smoother library migrations: A
look at vulnerable dependency migrations at function level for npm javascript packages,” in 2018 IEEE International
Conference on Software Maintenance and Evolution. IEEE, 2018, pp. 559-563.

“WeChat miniapp evaluation,”
https://developers.weixin.qq.com/community/develop/article/doc/00028a270781c01547b81¢2565b013, 2019, (Accessed
on 04/21/2021).

S. M. Mirtaheri, M. E. Dingktiirk, S. Hooshmand, G. V. Bochmann, G.-V. Jourdan, and . V. Onut, “A brief history of web
crawlers,” arXiv preprint arXiv:1405.0749, 2014.

M. Ali, M. E. Joorabchi, and A. Mesbah, “Same app, different app stores: A comparative study,” in 2017 [EEE/ACM 4th
International Conference on Mobile Software Engineering and Systems. IEEE, 2017, pp. 79-90.

H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps removed from google play? a large-scale empirical
study,” in 2018 IEEE/ACM 15th International Conference on Mining Software Repositories. 1EEE, 2018, pp. 231-242.
H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong, “An explorative study of the mobile app ecosystem
from app developers’ perspective,” in Proceedings of the 26th International Conference on World Wide Web, 2017, pp.
163-172.

M. Zheng, M. Sun, and J. C. Lui, “Droidray: a security evaluation system for customized android firmwares,” in
Proceedings of the 9th ACM symposium on Information, computer and communications security, 2014, pp. 471-482.

M. Elsabagh, R. Johnson, A. Stavrou, C. Zuo, Q. Zhao, and Z. Lin, “FIRMSCOPE: Automatic uncovering of
privilege-escalation vulnerabilities in pre-installed apps in android firmware,” in 29th USENIX Security Symposium,
Aug. 2020.

Received February 2021; revised April 2021; accepted April 2021

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 14. Publication date: June 2021.

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 43.25, 60.06 Width 403.65 Height 76.09 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 43.2486 60.0589 403.6533 76.0854

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 25
 0
 1

 1

 HistoryList_V1
 qi2base

