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ABSTRACT

Miniapps have become an integral part of super apps like WeChat,
enabling third-party developers to offer diverse services such as
ride-hailing, shopping, and gaming. While miniapps provide a light-
weight, convenient development model with access to rich APIs,
they also introduce new privacy concerns. Specifically, miniapps
often collect sensitive information including device identifiers and
social network metadata via super app APIs, raising the risk of user
fingerprinting. Unlike traditional web and mobile platforms, finger-
printing in miniapps has not yet been systematically studied, despite
growing concerns and user complaints. In this paper, we present the
first large-scale study on fingerprinting within miniapps. We begin
by analyzing real-world miniapps to extract fingerprinting patterns,
and then introduce FINGERPRINT-FINDER, a detection tool that iden-
tifies clusters of permission-less, fingerprintable data. Applying
FINGERPRINT-FINDER to a dataset of over 4.03 million miniapps,
we identify 1,310 cases of fingerprinting behavior, which are later
clustered into 285 families. We further identify that basic, bench-
mark, and screen information are commonly used for performing
fingerprinting users. Besides, canvas fingerprinting techniques are
also popular. These codes come from not only miniapp templates
and reused components, but also from third-party libraries provid-
ing business analytical services. Our findings reveal the breadth
and sophistication of fingerprinting practices in miniapps, and we
publicly release our dataset to foster further research. This work
offers critical insights for building effective defenses and shaping
future privacy regulations in the miniapp ecosystem.
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1 INTRODUCTION

With the emergence of miniapps, giant app vendors such as WeChat
has transformed into super apps. These super apps offer a wide
range of essential services tied to users’ daily lives, such as ride-
hailing, food delivery, online shopping, and gaming, provided by
various third-party developers via miniapp integration. For these
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service provides, miniapps enable them to reach a huge amount
of users with minimal development cost by leveraging the feature-
rich functions from super apps, which brings additional channels to
acquire new users and facilitate convenient shopping experience.

However, these services commonly involve sensitive information.
For instance, automatic login via phone number becomes a common
practice among miniapps, and user information is often collected
by large business vendors to deliver personalized advertisements.
As a means of extending the services provided via web applications
and mobile apps, miniapps have fallen into a gray area where user
fingerprinting becomes concerning, just as the traditional web and
mobile research domain. With the convenient APis provided by the
super app platforms, accessing these types of information becomes
increasingly easy, with just a few invocation to super app APIs,
developers can acquire a wide range of information ranging from
device information to social network details.

Despite that the super apps enforce permission mechanisms on
critical information such as users’ phone numbers, there are still
a number of data remain overlooked. However, these “permission-
less” data, once collected by miniapps, may still generate enough in-
formation for tracking a unique user or device. As reported by recent
studies [1, 2, 5-8, 12, 16, 21], information such as screen information,
system software version, installed fonts, and even images drawn
on canvas have been commonly used by web applications to facil-
itate user fingerprinting. As a result, these information, if collected
without proper regulation, can cause serious user privacy issues.

Compared with traditional domains such as web security and
android security, the fingerprinting issue in miniapps have not
yet been previously studied. Although there has been reports and
complaints from users about miniapps attempting to fingerprint
users for customized recommendations, it remains unclear why
and how the fingerprinting is made possible, given the additional
restrictions such as data isolation enforced by super apps. In re-
sponse to this, this paper presents the first study on fingerprinting
in the context of miniapps. To do so, in this paper, we first generate
research insights of detecting fingerprinting in miniapps based on
motivating examples collected from real-world miniapps. Then,
we develop FINGERPRINT-FINDER, a tool to identify and attribute
clustered collections of permission-less fingerprintable information.

We apply FINGERPRINT-FINDER and additional semantic con-
straints to filter miniapps involving fingerprinting among over 4.03
million miniapps, resulting in 1,310 miniapps out of 1,367 miniapp
cases, which are clustered into 285 families. We further examined
these cases, and identified three types of information (basic, bench-
mark, and screen information) commonly used for device finger-
printing, together with 2 miniapp template platforms, 2 WeChat
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miniapp components, and 4 analytical libraries that are involved
in these fingerprinting behaviors. We are releasing our findings to
the public, and we believe that our first study in this field generate
valuable insights for future works on comprehensive fingerprint-
ing detection, so as to safeguard the overall privacy of the entire
miniapp ecosystem.

In short, this paper makes the following contribution:

o First study in miniapp user fingerprinting. In this re-
search, we present the first study of user fingerprinting in
miniapps. Through automatic detection and miniapp clus-
tering, we identify 3 types of commonly-used device finger-
printing data and how canvas fingerprinting is performed,
through case study of real-world miniapps.

o Identification of fingerprinting approaches and partic-
ipants. We found popular libraries and components com-
monly integrated by miniapp developers to perform user
fingerprinting with access to permission-less data, and these
findings are not limited to common ways to perform device
fingerprinting and canvas fingerprinting, but also include
evasive obfuscation and anti-fraud functionalities.

e Publicized dataset to enable future research. We will
release our findings and datasets to the public so as to enable
future research in a more comprehensive yet automated
detection to safeguard the privacy of miniapp users.

2 BACKGROUND
2.1 Miniapp

Miniapps are a novel form of service integration that combines
web technologies such as Markup Languages, Stylesheets, and
JavaScript, into mobile apps, allowing developers to reuse the mo-
bile app’s core components to reduce development cost. These
minaipps typically relies on the mobile app called super app, such
as WeChat and Alipay. By utilizing these modules and user data
provided by super apps, miniapps can provide a seamless user ex-
perience without requiring explicit installation or registration.

The exposed core modules offer miniapps great functionality.
For instance, a miniapp can invoke requestPayment () to invoke
the built-in payment component, showShareMenu() to access more
information if a user shared the miniapp to a group chat, getSys-
temInfo() to obtain a set of device information, or getPhoneNum-
ber() to obtain encrypted user phone number if the developer
meets certain qualification requirement. The ability to reuse these
functionalities while keeping the miniapp packages light-weight, as
these complex components are reused instead of writing hundreds
of lines of code.

2.2 What is Fingerprinting

In the era of mobile computing, device fingerprinting is commonly
used to identify and track devices of a user based on device informa-
tion, such as software versions, screen information, and hardware
details. Compared with other tracking approaches such as cookies,
fingerprinting is often covert but raises privacy issues, as they are
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collected without notifying the users, and thus users are often not
aware of whether they are being tracked.

While fingerprinting is usually not as explicit as other explicit
tracking approaches, it is still common and vital for business ven-
dors as a form to enable security enhancement (e.g., fraud and
anomaly detection, and monetization (e.g., advertisement and rec-
ommendation personalization). To achieve these, vendors may col-
lect multiple sets of information, which can be categorized into the
following categories.

Passive fingerprinting. A common approach to stealthily finger-
print users is to collect side-channel information that, when com-
bined together, can uniquely identify a user-associated browser,
device, or identity.

e Device-based fingerprinting. Device-based information is
commonly used for fingerprinting. For web apps, when send-
ing network requests, various metadata such as user agent
is attached for the back-end server to identify the software
version and system information, which includes browser
type, version, and operating system information [6]. On top
of these user agent information, additional information such
as IP addresses, time zone, and list of installed fonts can be
collected to increase the uniqueness of collected data [8].
Consequently, these information can be used for tracking a
user’s device.

¢ Behavior-based fingerprinting. On top of the information
that directly represent partial device information, another
line of work focuses on collecting data about a user’s behav-
ior of using a device. For instance, users’ screen touching
behaviors can be used to identify a user silently [5], and
similar works on implicit continuous authentication based
on motion sensor can be seamlessly applied to implement
such user tracking [10, 12].

Active fingerprinting. Although fingerprinting generally do not
involve active prompts informing users that they are being tracked,
vendors attempting to fingerprint users may still actively perform
certain activities that, although not necessarily appear to be rele-
vant, can still collect device- or user- specific information.

¢ Rendering-based fingerprinting. As each devices’ screen
and hardware vary, applications can render certain contents
in a canvas or using webGL to fingerprint a user by gener-
ating hash values [1]. For instance, the canvas can be used
to display texts and pictures. However, the screen configura-
tion for each device may still vary, even though the canvas
is created in the same size and the fonts display the same
content with the same font sizes. As such, if a screenshot is
generated based on these contents, the hash value of these
screenshots vary among each device. As such, the canvas
can be used to fingerprint user devices.

o Audio-based fingerprinting. On top of the visual informa-
tion, audio-related information can be used to determine a
user, as the acoustic environment where each device is settle
in are different. By playing certain audio and listening to the
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echos from the built-in microphone, a website may be able
to infer unique devices based on these information by just
playing a sound as simple as a single triangle wave [7].

While these fingerprinting techniques may or may not require
permission from the system to acquire necessary information, the
vague implications of the fingerprinting behavior makes it hard for
users to perceive. As such, these discussed approaches have been
widely adopted by malicious website, especially phishing pages.
According to a recent study on 1.7 million phishing pages [16],
over 73% of phishing pages adopt at least three fingerprinting func-
tions, with close to a quarter (24.6%) adopting more complex active
fingerprinting, i.e., canvas, WebGL, and Audio-based fingerprinting.

2.3 The Miniapp Permission System

As resources made accessible to miniapps are not restricted to those
managed by the underlying system, miniapps have to comply with
an additional layer of permission system built by each super apps.
As illustrated in recent research on miniapp security [26], major
super apps manage differently on what type of data is subject to
additional layer of permission. In general, the protection status of
the accessible data falls into three categories:

Cat. I: protected by super apps. The most sensitive data is pro-
tected by an additional layer of permission mechanism where users
will see an additional prompted dialog showing that the miniapp
is accessing the specific type of data. These data include access to
location data, camera, audio recorder, as well as user information
that is registered to the super app.

Cat. II: inherited from underlying system. The data that is “less”
sensitive may not be protected by the additional layer of permission
system built by super apps, but may still be protected as the under-
lying system requires users to grant the permission. For example,
although super apps such as BAipu do not explicitly require users
to grant access to Bluetooth, the underlying Android system may
still prompt the user to grant permission when Bluetooth is invoked
if Baidu has not yet obtained the permission from Android.

Cat. III: not protected. In addition to data fetched from the under-
lying system, super apps may still provide miniapps with sensitive
data users gave to the super app vendors. Although a part of these
data such as user information is protected under category I, there
still exists data that is not protected by certain platforms. For exam-
ple, while DouyIn (Chinese version of TIkTOK) enforces additional
permission for clipboard data, a majority of platforms do not en-
force additional protection, allowing miniapps to access these data
without prompting the users of the usage.

3 OVERVIEW

While many sensitive information is protected by the permission
mechanism, there are still ways to fingerprint users with a combi-
nation of seemingly-less-sensitive data, such as device information,
screen information, and the users’ environments. As such, it cre-
ates a risk of permission-less fingerprinting, which is much more
concerning because users being fingerprinted will not receive noti-
fications nor see prompted dialogues about permission.
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However, it is still non-trivial to detect such cases. As the first
effort in the realm of miniapp fingerprinting, the first step of this
research is to identify real-world cases performing permission-less
fingerprinting practices, which requires systematic analysis and
evaluation. To do so, in the following of this paper, we first analyze
and list all the APIs with the potential to track users without having
to obtain user permission, and then generate research insight of
detection with a real-world example. Based on this insight, we
develop detection tools based on the research insights to study
these miniapps in the rest of the paper.

3.1 Permission-less fingerprinting

As discussed in this paper, while privacy data is protected by per-
mission system, there are still APIs that can enable various user
fingerprinting approaches that do not require users to authorize.
As such, these APIs, when invoked to collect user related informa-
tion, can enable permission-less fingerprinting, which is stealth and
not visible to users, casusing severe potential privacy risks. To sys-
tematically identify these threats, we performed a comprehensive
analysis on the APIs provided to WeChat miniapps, and identi-
fied 20 APIs that can be used to perform the four fingerprinting
techniques as discussed in subsection 2.2.

As illustrated in Table 1, among the 19 APIs, 12 APIs are adopted
whereas 7 are not. These APIs can be used in either device finger-
printing, audio fingerprinting, render-related fingerprinting and
behavior-related fingerprinting. For instance, there are 11 APIs that
can be used to collect device information such as screen width and
device version. On the other hand, rendering-based fingerprint-
ing can be performed by creating a canvas, draw certain texts and
convert the screenshot into URL, from which a hash value of the
screenshot can be generated to fingerprinting a device. However, as
we focus on permission-less fingerprinting in this paper, we remove
the 4 APIs that require specific permissions such as bluetooth and
record (access to microphone) permission. Meanwhile, we did not
include the behavior-related APIs because they involve collecting
sensor information in the background. Unfortunately, during our
preliminary experiment, WeChat reduces the sample rate and time-
frame of sensors when they are in the background, making the
collected information inaccurate for fingerprinting. As such, we
consider the 12 APIs as listed in the table.

3.2 Motivating example

While we have summarized the APIs that can be utilized to
collect informatino to fingerprint users, the real cases may be far
more complex than simple sequential invocation, which makes
it challenging for detection. As shown in Figure 1, a miniapp is
incorporating a third-party script to collect information of user
devices. However, instead of immediately invoking the APIs, the
script first defines the methods (APIs) to be invoked, together with
the parameters in the return values that will be used. Also, while
the API getSystemlInfo returns 33 parameters, only 11 are used.

Then, the actual collection behavior is triggered later in the main
function, which is invoked when the miniapp is launched. These col-
lected information are then constructed into a JSON object, which
is further encoded, hashed, and attached to corresponding web
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Type API Name Permission | Adopted
wx.getSystemInfoSync -
wx.getSystemInfoAsync -
wx.getSystemInfo -
wx.getWindowlInfo -
wx.getDevicelnfo -
Device wx.getDeviceBenchmarkInfo -
wx.getAppBaselnfo -
wx.getBluetoothDevices bluetooth
wx.getConnectedWifi location
wx.getNetworkType -
wx.getSystemSetting -
wx.startRecord record
wx.joinVoIPChat record
wx.canvasToTempFilePath -
Render wx.canvasGetImageData -
toDataURL -
wx.startAccelerometer -
Behavior | wx.startCompass -
wx.startGyroscope -

Table 1: List of fingerprinting-capable APIs, permission re-
quirement, and whether adopted as permission-less finger-
printing

AN NN N NN

S

Audio

AN

1 var e, t = getApp({

2 allowDefault: !0

3 }) .globalData.wxCookie, ...,

4+ s =[{

5 method: wx.getScreenBrightness,

6 infos: [ [ "screenBrightness", "value" ] ]
7 e

8 method: wx.getSystemInfo,

9 infos: [ "brand", "model", "screenWidth", ... ]
10 Tol

11 method: wx.getNetworkType,

12 infos: [ "networkType" ]

B} 1,

14 a = t.getCookie("shshshfpa"),

t.getCookie("shshshfpb")...

Figure 1: An example of scripts collecting side-channel in-
formation for user tracking

requests. As such, the script can identify user device based on the
system information, screen brightness, and network information.
Interestingly, this module belongs to an online shopping miniapp,
which involves subpages from the giant vendor JingDong. As such,
it is possible that the behavior is deliberately made stealth to collect
business data while avoiding regulation issues.

3.3 Methodology

Based on the motivating example, in this paper, we perform a pre-
liminary analysis on the fingerprinting miniapps. It is worth noting
that there has not yet been a dataset for miniapps confirmed to
involve fingerprinting. As the first line of study, this paper specifi-
cally focuses on the miniapps with two criteria to minimize false
positives of the results. First, the miniapp invokes APIs capable
of performing permission-less fingerprinting, as listed in Table 1.
Such invocation includes complex cases where listing of APIs and
invocation of APIs are separated, such as the example shown in
Figure 1. Second, to narrow down the scope of sampling for fo-
cused analysis, the miniapp has to display semantic characteristics
explicitly related to fingerprinting. In this paper’s case, we search
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for keyword “fingerprint” to reduce the scope. The results are then
manually examined to ensure the correctness of the result. We hope
that our results serves as the start point to facilitate future works of
more comprehensive detection in the entire miniapp community.

4 IDENTIFYING FINGERPRINTING

During our analysis of motivating examples, we observed that de-
spite that the collection of user fingerprintable data can be complex
and the declaration and actual collection can be separated, the devel-
opers commonly list the collection APIs in batch. For instance, the
API getSystemlInfo and the parameters listed in the infos variable,
including brand, model, screenWidth, are declared back-to-back
within a single script, as shown in Figure 1. Similarly, recent re-
search [2, 21] identified that fingerprinting scripts commonly access
data in batch within a few scripts, enabling us to identify miniapps
performing fingerprinting by counting the occurrences of access
to fingerprintable data within a single script. Based on this ob-
servation, we develop the Miniapp User Fingerprinting Feature
Identification Analyzer (MUFFIn), a light-weight multi-thread anal-
ysis tool to identify permission-less fingerprinting among miniapps,
based on JavaScript analysis framework JAW [11].

Semantic Filtering. While we could apply the analysis directly
on the total dataset of miniapps, as the first study in fingerprinting
of miniapps, this research aims to prioritize the correctness of
research insights and findings, which means that the results need
to be examined by the researchers. As such, we reduce the total
sampling size, and specifically focus on the miniapps that involve
keywords of “fingerprint” in the script file. While we admit that this
keyword is narrow, but it serves as an important step to facilitate
future detection techniques that can be applied to all miniapps.

Dependency Graph Generation. The first step of the analysis is
to generate the dependency graph for each script in the miniapp.
During this process, JAW will analyze the Abstract Syntax Tree
of the miniapp and to generate two separate fies: the nodes and
the relationships. More specifically, the node files record node type
(e.g., CallExpression or MemberExpression), location, value, and
whether it is an AST node or a CFG node. Then, the relationship file
records records data flow edges generated from the original code,
including source and target node ID, relation type and arguments
attached. As such, we can perform backward tracing on nodes.

Invocation Identification. The next step is to identify invocation
of APIs and parameters of interest. To do so, we further analyzed
the APIs listed in Table 1 and developed a mapping between APIs
and the parameters in their return values that can be used for
permission-less fingerprinting, spanning 112 parameters among 12
APIs. To find the starting point, we search through the node AST
nodes to find invocations to interested APIs. If found, these APIs
are added to the starting point.

Then, for each starting point node, we perform backward tracing
to resolve the name of the API or the parameter. This may involve
three conditions:

¢ Function invocation. If the type of the edge is invocation,
it means that we identified a fingerprintable API, such as
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Algorithm 1: Identify and generate data of fingerprinting
API/param within a page

Input: path_to_miniapp, Analyzer, APy, paramy
Output: pagedata

1 nodes,edges «— Analzer.generate(path_to_miniapp)
2 G « generateGraph(nodes,edges)
3 to_analyze < find_nodes_of_interest(G, APIy, paramf)

4 foreach (id, kind, value) in to_analyze do

5 if kind = ‘invoc’ and backward_trace(G, id, kind, value)
then
6 pagedata.append({type: ‘invoc’, context:
find_successor(G, id), value: value+"()"})
7 end
8 else if kind = ‘param’ and value in param_allowlist and
backward_trace(G, id, kind, value) then
9 pagedata.append({type: ‘param’, context:
find_successor(G, id), value: value})
10 end
11 else if kind = ‘elem’ then
12 declared « array_graph_to_list(G,
element_relationship, id, param_allowlist)
13 if declared # None then
14 pagedata.append({type: ‘elem’, context:
‘ArrayExpression’, value: declared})
15 end
16 end
17 end

18 return pagedata

getSystemlInfo. As such, we record the name of the API along
with its context AST node type.

e Parameter access. If the type of the edge is parameter,
we identify the access to a member of an object returned
by fingerprinting API. This usually happen when a script
invokes a fingerprinting API first, assigns the return value
to a variable (e.g., a), and then access the member directly
from the variable, e.g., a. screenHeight. As such, we record
the parameter name and its context AST node.

e Array element. If the type is element, it hits the special
case we identified, where the developers declare parameters
to access in batch, in the form of an array. As illustrated
in Figure 1, the script accesses the screenBrightness and
value for the API getScreenBrightness(). If this happens,
we resolve the values declared in the list separately, which
will be introduced in the next paragraph.

Nested Declaration Processing. If a script separates declaration
and access of fingerprintable parameter, a list containing parame-
ters of interest will be declared. However, such list may be nested.
For example, in Figure 1, the screenBrightness and value are de-
clared in a nested list. Nevertheless, FINGERPRINT-FINDER needs to
output a sequential list of function invocation, access to parameter,

SaTS 25, October 13-17, 2025, Taipei, Taiwan

and elements declared. As such, we need to flatten the nested dec-
larations. To do so, we identify each of these ArrayExpression, and
traverse the child nodes in a depth-first manner. If we encounter an
array when traversing through the list element, we first resolve the
contents in this sub-list, and then continue the traversal. As such,
we generate a sequential list of elements declared in the list.

5 RESULTS

5.1 Execution

We executed our experiment on 4.03 million miniapps in two rounds.
In the first round, we perform semantic matching of the miniapps
related to fingerprinting by obtaining the package file, reading the
binary file and looking for any keywords matching fingerprint-
ing, case insensitive. This results in 1,367 miniapps. Then, in the
second round, we apply our MUFFIN analyzer on the filtered list
of miniapps. The entire process utilizes a server with 16 Xeon
4314 CPU core and 64 GB memory, which takes around one and
half a month to finish. MUFFIN processes each miniapps for 85.96
seonds on average, identifying 1,310 miniapps that actually invoke
fingerprint-related APIs. We sampled the 57 miniapps and found
that part of the reason for these cases not related to fingerprint-
able API is because they implement unlock with user fingerprint
(i.e., the actual finger unlock), which is related to user biometric
unlocking instead of user fingerprinting. As such, MUFFIN is able
to filter out these irrelevant cases. In the rest of the paper, we will
discuss in details how we group the miniapps based on similar
scripts and sample for identifying real-world cases to understand
the ecosystem.

5.2 Families

Upon analyzing the miniapps, we first identify a list for each scripts
found to be involved in user fingerprinting APIs. Then, we generate
a hash based on the list of script paths. This procedure yields 285
families in total, whose size ranges from 110 to 1. As shown in Ta-
ble 2, we show the top 10 popular families involved with fingerprint-
ing. We also categorized the data that can be used for fingerprinting
user into 9 categories: authorized permission list, basic informa-
tion about device, benchmarking ratings, canvas-fingerprintable
data, enabled peripheral features, hardware information, network
information, screen information, and user settings.

We discover that permission authorization list, enabled features
and hardware information is not accessed by any of the popular
families, but a majority of popular families access 100% of the total
basic information and network information. Also all popular fami-
lies access from 43% to 86% subtypes out of the total accessible types
of screen information, and more than half of these cluster access
benchmark information. As such, we observe that basic and screen
information is commonly used to perform user fingerprinting. On
top of that, we are surprised to find that 8 out of 10 popular families
utilize canvas information to fingerprint user device.

5.3 Case studies

To further understand the ecosystem, we perform additional case
studies based on the families we generated. More specifically, we
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Family # Family Fingerprintable Data # Related
Size Authorization Basic Benchmark Canvas Enabled Features Hardware Network Screen User Setting Pages
1 110 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 85.71% 50.00% 10
2 75 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 85.71% 50.00% 26
3 64 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 85.71% 50.00% 25
4 62 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 85.71% 50.00% 27
5 51 0.00% 25.00% 0.00% 100.00% 0.00% 0.00% 100.00% 42.86% 12.50% 7
6 45 0.00% 100.00% 0.00% 100.00% 0.00% 0.00% 100.00% 85.71% 50.00% 19
7 38 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 12.50% 1
8 36 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 85.71% 50.00% 28
9 25 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 85.71% 50.00% 26
10 25 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 42.86% 37.50% 12

Table 2: Top 10 families by size

1 <!--fmSDK/fm.min-1.0.3.4.js-->
2 wx.getSystemInfoSync().SDKVersion, "1.9.9") >= 0 &&
3 i = setInterval(function() {
4
5

r = wx.createCanvasContext(h, this);

6 // Draw rectangle

7 r.rect(0, @, 10, 10), r.textBaseline = "alphabetic",
8 r.fillStyle = "#f60", r.fillRect(32, 1, 62, 20),

9 // Print text

10 r.font = "18pt Arial",

11 r.fillText("Cwwm aa fjorddbank", 4, 45),

12 r.fillStyle = "rgh(255,0,255)",

13 // Draw arc

14 r.beginPath(), r.arc(16, 16, 16, @, 2 * Math.PI, '0),

< r.closePath(),

16 r.draw(!1, function() {

17 wx.canvasToTempFilePath({

18 canvasIld: h, x: 0, y: 0,

19 fileType: "png",

20 success: function(n) {

21 n.tempFilePath;

22 try {

23 a.drawt = new Date().getTime();

24 var i = wx.getFileSystemManager()

25 .readFileSync(n.tempFilePath, "base64");
2 d = c.hexMD5(i), a.md5t = new Date().getTime();
27 } catch (t) {...}

28 e s

29 D

30 , 100}

Figure 2: An example of canvas fingerprinting. The case
draws shapes on the canvas, and writes the canvas to a local
file, which is used to generate MD5 hash and timestamp.

would like to analyze both the most popular families and the least
popular families, so as to provide a thorough understanding be-
tween the most common practices and the more fragmented prac-
tices. As such, based on the clustering results, we first sample one
miniapp out of each top-30 popular families, and then sample 20
miniapps out of each low-popularity families, thus forming a dataset
consisting of 50 miniapps. Upon examination, we observed that
there is a predominant adoption of a few miniapp libraries when
performing user fingerprinting, most of which are for reporting
business analytics to the vendors. Meanwhile, there are additional
behaviors, such as antifraud, canvas fingerprinting to augment
the accuracy of the fingerprinting results. In the end, we even dis-
covered cases where miniapps actively attempt to obfuscate the
operations to canvas, potentially trying to escape from the regula-
tion from the platforms.

Device fingerprinting. During our investigation, we found that
device-based fingerprinting is common among miniapps, which
is mainly used for reporting user-related analytics to the vendors
providing miniapp services. For example, the motivating example
we displayed in this paper comes from a widely-adopted template
called the JingDong Miniprogram Open Platform, which involves
16 out of 30 most popular cases we have sampled. This compo-
nent set allows developers to utilize the marketing and transaction
chain from JingDong and deploy their own businesses in WeChat
ecosystem, which can significantly reduce the cost of development.
Similarly, Youzan [28], a open platform providing Platform-as-a-
service (PaaS) for shop owners to deploy their own miniapp stores
by customizing templates, is also commonly used in the most pop-
ular families.

On top of that, we identify multiple active libraries that are
commonly used for user analytics. For instance, in the JingDong
template, we identified a library named Kepler [3], which is used
to perform data agnostic. Other than that, we found 3 families using
ald-stat [17], 2 family using sentry [18], and 3 families using
components from the WeChat miniapp store which incorporates
similar logics. For the case in Youzan, the fingerprinting logics are
bundled in a file named vendor. js, which is a common practice for
miniapp developers to integrate external libraries. Other than that,
for the 20 fragmented miniapp families, we found 2 additional fam-
ilies using raven [4] to perform such fingerprinting. As such, we
conclude that the fingerprinting behaviors are commonly invoked
in the form of external libraries instead of being implemented by in-
dividual developers, potentially due to the complexity of developing
fingerprinting functionalities.

Canvas fingerprinting. On top of the common cases where miniapps
utilize libraries to collect information to facilitate device fingerprint-
ing, we found that miniapps commonly perform canvas fingerprint-
ing by displaying contents on the user’s devices and export the files
or convert the canvas image to URLs, which is accessible in the
future. To our surprise, we even found a case that explicitly save the
rendered canvas and generate md5 hash, which is a typical pattern
for canvas fingerprinting. As illustrated in Figure 2, the code in
fmSDK creates a canvas in line 5, which draws two rectangles, a line
of text, and an arc. Then, it generated the canvas into a temporary
file in line 22 as a png image. After that, the file is read into memory,
and a md5 hash together with the timestamp is attached to the file.
As such, the miniapp is able to fingerprint a unique device based
on the hash value generated from the canvas information.
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1 <!--matters/barlas.js-—>
2 var t =
< wx.getFileSystemManager().readFileSync("/txt/barlas.txt",
— "utf-8")
var n = JSON.parse(t)
s = function(e, t) {
return nfe -= 01;
}
g.addEventListener(window, s(28), n), gl[s(26)](window, s(29),
< n), function(t, n, i) {

FE TN S

9 getCanvasFingerprint: function() {

10 var e = document.createElement(s(24)),
11 t = e.getContext("2d");
12 return ...,

13 t[s(139)] = s(144),
— t[s(143)]1("https://www.talkingdata.com", 4, 17),
— e[s(145)]10;
14 //
15 t["fillStyle"] = rgba(102,204,0,0.7),
— t["fillText"]("https://www.talkingdata.com", 4, 17),
— e["toDataURL"I();

16 }

17 }

18 <!--matters/barlas.txt-->

19 [... "savnac", ... // 24th canvas

20 "elytS11if", ... // 139th fillStyle
21 "txeTllif", ... // 143th fillText

22 "LRUataDot", // 145th toDataURL ...]

Figure 3: A case that obfuscates the canvas fingerprinting
behavior with reversed texts. Due to space limit, only impor-
tant strings are shown from line 18.

Self-implemented Obfuscation. In our sampled miniapps, it is
surprising that there are miniapps that deeply obfuscate the canvas
fingerprinting behavior by hiding reverse-ordered code inside text
files, potentially attempting to evade the vetting or regulation from
the platform. For example, as shown in the case in Figure 3, the
miniapp involves two scripts: the barlas. js and the barlas. txt.
When performing API detection and semantic search of fingerprint,
neither of the two files involve related keywords, and thus the
miniapp will remain undetected. However, it encapsulates a func-
tion in line 4, which extracts the corresponding text from the file in
a reversed manner. Meanwhile, it edits the prototype of the object
t to invoke canvas-related APIs. For instance, the code in line 14 ac-
tually edits the fillStyle and fillText, and then invoke the API
wx. toDataURL (), a critical API to facilitate canvas fingerprinting.

Interestingly, the script displays an URL, which enable us to dig
further more about the provider. This domain belongs to a company
called “TalkingData” [20], which provides marketting solutions for
business owners. This company has a set of SDKs which involves
functionalities to fingerprint users for reporting user analytics,
similar to the aforementioned libraries.

Anti-fraud. Despite being commonly used in tracking users, we
have found legitimate banks attempting to collect fingerprintable
data for anti-fraud functionalities. For instance, we found that a
miniapp integrates a file fingerprint2_x. js as a library that ob-
tains the system information, screen information, canvas informa-
tion, etc, to generate fingerprints for a user. This library is invoked
by a script called antiFraud. js, which is invoked in pages where
sensitive operations are involved, such as changing phone numbers,
binding new cards, and resetting passwords.
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6 DISCUSSIONS

Takeaways. In this paper, we developed FINGERPRINT-FINDER, an
analysis tool to identify fingerprinting miniapps based on semantic
filtering and static analysis based on API identification. We per-
formed a large-scale analysis and found 1,310 miniapps involved
in such behavior, During our case studies, we identify that ba-
sic information, benchmarking scores, and screen information are
commonly used to fingerprint users. Canvas fingerprinting may
also be commonly adopted. In this ecosystem, there are not only
miniapp template platforms and components, but also third-party
libraries that perform user fingerprinting to provide vendors with
business analytic data. There are even cases where individually-
implemented libraries attempting to adopt obfuscation to evade
through the vetting process.

Limitation and Future Work. In this paper, we strive to provide
a preliminary fingerprinting miniapp dataset, thus we limit the
scope by strict semantic matching, resulting in a relatively small
dataset consisting of 1,310 miniapps. Also, we specifically focus
on simple access to fingerprintable data in this research. Future
works can improve the scope of the analysis, identify more complex
fingerprinting cases, and attribute the fingerprinting behaviors so
as to provide more research insight for the community as well as
platforms to better protect the privacy of users.

Research Ethics and Open Policy. We practice caution during
our experiment to minimalize ethics issues. First, the experiment
operates on downloaded miniapp packages, where the analysis does
not influence the deployed miniapps. Second, we have reported our
findings to the platform, and we are working with these platforms to
improve our framework. On top of that, this paper follows common
open science practices, and our artifacts will be released to the
public once published to facilitate future research.

7 RELATED WORK

User Fingerprinting. The issue of user fingerprinting has been
studied over the past decade in mobile and web security domain.
For instance, there has been multiple research [1, 2, 16, 21] that
summarize the threat of stealth fingerprinting in browsers. Addi-
tionally, recent works [5, 10, 12] have shown the capabilities for
sensor data to be utilized to infer users who is unlocking or using a
mobile device. On top of that, the possibility for audio fingerpint-
ing [7], and how canvas information can be utilized to perform user
tracking [1, 9, 13], have been discussed in the past decades.

Miniapp Security. Recent works on miniapp security spans three
major direction. On one hand, recent works have been focusing
on identifying vulnerabilities exploitable to malicious develop-
ers against the super app platform [22, 23, 25, 31] and individual
miniapps [19, 26, 29]. Additionally, another line of work focus on
identifying approaches enabling malware to sneak through the
ecosystem, thereby causing harm to the privacy and security of
users [15, 27]. The last line of work focuses on the privacy practice of
information sharing between miniapps and the platform [14, 24, 30].
Compared with these existing works, this paper presents the first
study to understand how and why miniapps may perform finger-
printing on users that can bypass the permission system built by
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the super apps to protect user privacy, which can cause privacy
issues on users if misused by minaipp developers.

8 CONCLUSION

Our study presents the first analysis of permission-less user fin-
gerprinting issues among miniapps. We developed FINGERPRINT-
FINDER to detect and cluster miniapps that collect permission-less
data for fingerprinting, identifying 1,310 cases in 285 families from
a dataset of over 4.03 million miniapps. Our analysis uncovered
three common categories of fingerprintable data, widespread use of
shared components and libraries, and even obfuscation techniques
employed to evade detection. These findings expose critical privacy
challenges and underscore the need for more rigorous controls over
seemingly innocuous data access. By releasing our dataset and in-
sights, we aim to support future research and platform governance
efforts to enhance user privacy in the miniapp landscape.
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