
TAINTMINI: Detecting Flow of Sensitive Data in
Mini-Programs with Static Taint Analysis

Chao Wang
The Ohio State University

wang.15147@osu.edu

Ronny Ko
The Ohio State University

ko.410@osu.edu

Yue Zhang
The Ohio State University

zhang.12047@osu.edu

Yuqing Yang
The Ohio State University

yang.5656@osu.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Abstract— Mini-programs, which are programs running inside
mobile super apps such as WeChat, often have access to privacy-
sensitive information, such as location data and phone numbers,
through APIs provided by the super apps. This access poses a risk
of privacy sensitive data leaks, either accidentally from carelessly
programmed mini-programs or intentionally from malicious ones.
To address this concern, it is crucial to track the flow of sensitive
data in mini-programs for either human analysis or automated
tools. Although existing taint analysis techniques have been widely
studied, they face unique challenges in tracking sensitive data flows
in mini-programs, such as cross-language, cross-page, and cross-
mini-program data flows. This paper presents a novel framework,
TAINTMINI, which addresses these challenges by using a novel
universal data flow graph approach that captures data flows within
and across mini-programs. We have evaluated TAINTMINI with
238,866 mini-programs and detect 27,184 that contain sensitive
data flows. We have also applied TAINTMINI to detect privacy
leakage colluding mini-programs and identify 455 such programs
from them that clearly violate privacy policy.

Index Terms—Mini-programs, Taint analysis, Privacy leaks
detection, Security, Empirical Study

I. INTRODUCTION

A new mobile computing paradigm, dubbed mini-app
paradigm, has been growing rapidly in recent years among
highly popular social apps, such as WECHAT, TIKTOK, and
SNAPCHAT. In this paradigm, a host app allows its users to
install and run mini-apps (or mini-program called by Tencent and
Alibaba, quickapp by Huawei/Xiaomi, and smart mini program
by Baidu, according to a W3C white paper [1]) inside the host
itself [2]. The mini-apps, which behave just like native apps,
have enabled the host app to build an ecosystem around (much
like Google Play and Apple App Store), enrich the host-app’s
functionalities with various services (e.g., social e-commerce and
ride-hailing), and offer mobile users elevated convenience [3].
For example, PINDUODUO, a social e-commence provider,
has benefited significantly from this paradigm: now merchants
sell their products directly through WECHAT using their
mini-programs, allowing potential customers to browse the
products, share interests with their social network, and make
purchases without leaving WECHAT [4, 5]. Today, WECHAT
has hosted more than four million mini-programs [6], whereas
Google Pay has about three million mobile apps [7].

One reason for the success of mini-programs can be attributed
to the abundant data collected by the host app. For instance, super
apps such as WECHAT usually have collected a huge amount of
privacy-sensitive data (e.g., phone number, user’s home address,
and location data). To further enhance user’s experience, these
sensitive data have become accessible to mini-programs by the
super app’s APIs [8]. To protect these sensitive data from being
leaked, super-apps have introduced various security mechanisms
such as permission-based access control [9] to allow the collected
sensitive data to be accessed only by authorized mini-programs.

Now that privacy sensitive data can be directly accessed by
mini-programs through super app provided APIs, unavoidably
they can be leaked accidentally by carelessly programmed mini-
programs or intentionally by malicious mini-programs. A well-
known technique to solve this problem is taint analysis. However,
existing taint analysis for mobile apps such as TaintDroid [10]
and FlowDroid [11] cannot be directly applied, since taint
analysis for mini-programs introduces new challenges. First,
unlike programs solely implemented in a single programming
language, mini-programs are developed with multiple languages.
For example, a WECHAT mini-program usually contains at
least two types of programming languages: WXML (a markup
language for the design of the UI), and JavaScript. Second, since
the purpose of most mini-programs is to serve interactive user
requests, their programming logic heavily uses asynchronous
event handlers, such as from the initial app launch (e.g.,
onLaunch) to the service-ready state (e.g., onReady). Once
a mini-program becomes ready for service, its processing of
user requests is mediated by developer-implemented callback
functions registered under up to 195 mini-program API events
and 128 WXML tag events [12]. Third, data flow analysis
within a mini-program page is insufficient, because data can flow
across different pages when a user navigates a mini-program.
Finally, data can flow across different mini-programs when
a mini-program redirects a user to another one (e.g., from a
shopping mini-program to a payment mini-program).

To advance the state of the art, we present TAINTMINI, a
static taint analysis framework to track the flow of sensitive data
in inter-events, inter-pages, and inter-apps in mini-programs. At a
high level, TAINTMINI runs taint tracking for data flows across 4

mailto:wang.15147@osu.edu
mailto:ko.410@osu.edu
mailto:zhang.12047@osu.edu
mailto:yang.5656@osu.edu
mailto:zlin@cse.ohio-state.edu

domains: i) data flows between the webview layer (WXML) and
the logical layer (JavaScript); ii) data flows between asynchronous
event handlers; iii) data flows between different pages within the
same mini-program; and iv) data flows between different mini-
programs. The key idea in TAINTMINI is to build a universal data
flow graph, which is inspired by the JavaScript object dependency
graph (ODG) [13] initially generated by statically analyzing a
target program’s JavaScript to illustrate data read/write dependen-
cies among variables, objects, and object properties. However,
ODGen does not support the analysis of asynchronous callback
functions as well as the cross domain taint flows. As such,
TAINTMINI significantly extends ODG by further considering the
interactions between JavaScript and WXML, assigning new graph
nodes for such interacting WXML tags and their attributes, and
incorporating them into JavaScript’s data flow graph. TAINTMINI
also proposes a novel concept of event groups (a set of WXML &
JavaScript data objects that are to be processed synchronously in
a given mini-program’s logic), based on which TAINTMINI gener-
ates the event group execution order graph. This graph is used to
determine whether any given pair of asynchronous event handlers
in a mini-program has a deterministic order of execution or a flex-
ible order of execution. This collected knowledge is essential to
deciding the possibility of various data flows across asynchronous
event handlers. Finally, TAINTMINI tracks inter-page and inter-
app data flows by analyzing the arguments of the mini-program
APIs that process such actions (e.g., wx.navigateTo which
navigates to a different page, or wx.naviagteToMiniProgram
which navigates to a different mini-program).

Having the ability to track the flow of sensitive data,
TAINTMINI can be used in many applications such as detecting
cartographic key misues [14] or identifying potential privacy
leaks, e.g., location data sent through the network. However, it
is challenging to tell whether the leak is a violation of the user’s
intention [15], since many apps, e.g., location-based service apps,
need to collect those data for better services, and the users are ex-
plicitly asked to grant the location access permissions. Therefore,
automatic tools cannot directly detect the privacy leakage unless
there are well-defined security and privacy policies. However, in
this paper, we demonstrate how to use TAINTMINI to automati-
cally detect the privacy leaks caused by colluding mini-programs
given its “clear boundary”. In particular, in collusion attacks, the
user only gives the permission to the authorized mini-programs,
and she has never expected that the data is transmitted to other
mini-programs which do not have the corresponding permissions.

Contributions. In short, we make the following contributions:
• Novel Techniques (§IV). We propose TAINTMINI as the

first static mini-program taint analysis framework to track the
flow of sensitive data across different domains with a novel
universal data flow graph based approach.

• Empirical Evaluation (§V). We have implemented TAINT-
MINI and demonstrated its performance and effectiveness
for detecting 27,184 (11.38%) real-world mini-programs out
of 238,866 mini-programs containing sensitive data flows.

• Automated Application (§VI). While TAINTMINI can have
many applications, we particularly show how to apply it for

JavaScript

JavaScript

1: var registered = false;

2: Page({

3: data: { name: '', pass: '', phone: ''}

4: onLoad: function(option){

5: this.setData({ name: option.query });

6: var evChannel = this.getOpenerEventChannel();

7: evChannel.on('sinkPage', function(data) {

8: this.setData(

9: { name: data.detail.value.name });

10: this.data.pass = options.pass

11: this.data.phone = options.phone

12: }

13: onShow: function(){

14: registerID(data.name, data.phone, data.pass)}

15: onReady: function(){

16: if (registered == true)

17: {wx.navigateToMiniProgram({

18: appId: 'wxc2ada47bce176219',

19: extraData:{

20: name: this.data.name,

21: phone: this.data.phone}

22: },

23: success(res) {

24: wx[res.apiName](res.apiArgs);

25: }

26: })

27: }

28: }

29:})

WXML

WXML

WXML JavaScript

WXSS

WXSS

WXSS

Native Lib

Miniapp’s Frontend

Operating System

1: <view class="page-body">

2: <form catchsubmit="onSubmit">

3: <input name="name" password=false placeholder="Your Name"/>

4: <input name="pass" password=true placholder="Password"/>

5: <button open-type="getPhoneNumber" bindgetphonenumber="getPhoneNumber"></button>

6: <button formType="submit">Submit</button>

7: </form>

8: </view>

1: Page({

2: data: { phone: ''}

3: getPhoneNumber(e) {var plain=decryptedphone(e.detail.iv,e.detail.encryptedData)

4: this.data.phone = plain }

5: onSubmit: function (e) {

6: wx.navigateTo({

7: url: '/pages/submit?' + e.detail.value.name,

8: success: function(res) {

9: res.eventChannel.emit('sinkPage', {data:

10: {pass: e.detail.value.pass, phone: this.data.phone}

11: });

12: }

13: })

14: }

15:))

1: <view class="page-body">

2: <view class="sec-title">Your Record</view>

3: <view name="res-name">Name:{{name}}</view>

4: <view name="res-phone">Phone:{{phone}}</view>

5: </view>

1: onLaunch: function(o){

2: var e=this;

3: o.referrerInfo && (e.globalData.name

4: = o.referrerInfo.extraData.name) &&

5: (e.globalData.phone = o.referrerInfo.extraData.phone)}

6: onShow: function(){

7: wx.playBackgroundAudio({

8: success(res){showName(e.globalData.name)

9: wx.request({

10: url: 'record.php',

11: data: {

12: phone: e.globalData.phone,

13: name: e.globalData.name

14: }

15: })

16: }

17:})

sender-fillout.wxml

sender-fillout.js

sender-submit.wxml

sender-submit.jsreceiver-get.js

 Your Name

 Your Password

Get PhoneNumber

Submit

App1 requests to use your phone

Your PhoneNumber

 123-456-7890

No Yes

 Your Record:

Name: Alice

Phone: 1234567890

Name: Alice

Sender (fillout page)

Receiver (welcome page)

Sender (submit page)

❺

❶

❷

❸

❹

<form>[sender-fillout.wxml:L2]

input[sender-fillout.wxml:L5] input[sender-fillout.wxml:L4]

input[sender-fillout.wxml:L3]

onSubmit[sender-fillout.js:L5]

e[sender-fillout.js:L5]

phone[sender-fillout.js:L10]

e[sender-fillout.js:L3]

pass[sender-fillout.js:L10]

name[sender-fillout.js:L7]

onLoad[sender-submit.js:L4]

phone[sender-submit.js:L14]
pass[sender-submit.js:L13]

name[sender-submit.js:L9]

option[sender-submit.js:L14]

onLaunch[receiver-get.js]

extraData[receiver-get.js:L10]

phone[receiver-get.js:L12]

name[receiver-get.js:L13]

request[receiver-get.js:L9]

registerID[sender-submit.js:L16]

name[sender-submit.js:L16]

phone[sender-submit.js:L16]

pass[sender-submit.js:L116]

NavigateToMiniProgram

[sender-submit.js:17]

view[sender-submit.wxml]

name[sender-submit.wxml:L3]

phone[sender-submit.wxml:L4]

<form>

[sender-fillout.wxml]

onSubmit()

[sender-fillout.js]

onLoad()

[sender-submit.js]

onShow()

[sender-submit.js]

<form>

[sender-submit.wxml]

onReady()

[sender-submit.js]

registerID(.)

[sender-submit.js]

onLaunch()

[receiver-get.js]

name[sender-submit.js:L21]

phone[sender-submit.js:L20]

name[receiver-get.js:L8]

playBackgroundAudio

[receiver-get.js:L6]

Inter-WXML-JS Across-JS-EventInter-JS-Event

Across-Mini-app-Event Across-Event-Handler

WXML Tag

WXML Tag

<form>[sender-fillout.wxml:L2]

input[sender-fillout.wxml:L4]input[sender-fillout.wxml:L5]

onSubmit[sender-fillout.js:L5]

e[sender-fillout.js:L3]

phone[sender-fillout.js:L10]

e[sender-fillout.js:L5]

pass[sender-fillout.js:L10]

phone[sender-submit.js:L14]

pass[sender-submit.js:L13]

option[sender-submit.js:L14]

view[sender-submit.wxml]

phone[sender-submit.wxml:L4]

registerID[sender-submit.js:L16]

phone[sender-submit.js:L16]

pass[sender-submit.js:L116]

onLoad[sender-submit.js:L4]

NavigateToMiniProgram

[sender-submit.js:17]

phone[sender-submit.js:L20]

onLaunch[receiver-get.js]

extraData[receiver-get.js:L10]

phone[receiver-get.js:L12]

request[receiver-get.js:L9]

Inter-WXML-JS

Cross-Page

Inside-JS-Event

Cross-Mini-app-Event

Cross-Event-Handler

WXML Tag

JS Variable

Source

Sink

Event Group

Data

navigateToMiniprogram()

[sender-submit.js]

WebView

(DOM)

App.json

JavaScript

Engine

Native Lib

Host App

Mini-Program

Network Location Files Bluetooth NFC

request()

[receiver-get.js]

playBackgroundAudio

[receiver-get.js]

Fig. 1: The Architecture of Mini-Programs.

the automated detection of collusion attacks where one mini-
program legitimately accesses the sensitive data but delivers
to others that do not have the permissions. We have identified
455 such colluding mini-programs in our tested dataset.

II. BACKGROUND

The Architecture of Mini-Programs. A mini-program typically
consists of (1) a front-end running on the host app that interacts
with users and accesses the resources offered by the host app
as well as the underlying operating systems, and (2) a back-end
communicating with the front-end and providing online services.
As shown in Figure 1, similarly to native Android apps, the
front-ends of mini-programs are compressed and distributed in
files with specific formats, e.g., WECHAT mini-programs are
formatted as WXAPKG files. A packed WXAPKG file mainly
consists of four types of files: (i) a JSON file named app.json
containing the basic information and configurations (e.g., , the
permissions a mini-program requires) of the mini-program; (ii)
one or multiple JavaScript (JS) files that use APIs to access the
resources such as network communications and location data; (iii)
one or multiple WXML (a Marking Language, WECHAT version
of programmable HTML) files specifying the user interfaces
(UIs) such as the layout of input boxes and clickable buttons; and
(iv) one or multiple WXSS (Style Sheet, the WECHAT version’s
CSS) files to format the UIs (e.g., the font size and color).

A mini-program’s WXML and WXSS files are processed by
the rendering layer via a WebView Engine, whereas its JavaScript
files are processed by the logical layer (i.e., the JavaScript
Engine). However, WXSS is mainly used to format the UIs.
Therefore, the data flows are usually observed between WXML
and JavaScript files. From this perspective, the mini-program
framework is analogous to that of the conventional client-side
web framework which comprises HTML and JavaScript, and
allows a webpage to orchestrate dynamic interactions between
its DOM state (HTML) and JavaScript state (JavaScript). For
example, a webpage’s JavaScript can read a user’s input from
an HTML node, process it, and write the result to another
HTML node for graphical display. Similarly, a mini-program
also allows dynamic interactions between its webview layer
(WXML) and the logical layer (JavaScript) for similar purposes.

The Sensitive Data and Access Control. Mini-programs
can consume two categories of sensitive data through the
APIs offered by the host app. The first category is the data

1: <view class="page-body">
2: <form catchsubmit="onSubmit">
3: <input name="name" password=false placeholder="Your Name" />
4: <input name="pass" password=true placeholder="Password" />
5: <button open-type="getPhoneNumber" bindgetphonenumber="getPhone"></button>
6: <button formType="submit">Submit</button>
7: </form>
8: </view>

1: Page ({
2: data: { phone : "" }
3: onSubmit: function (args) {
4: this.data.phone=decryptedphone(args.detail.iv,args.detail.encryptedData)
6: wx.navigateTo({
7: url: "/pages/submit?" + args.detail.value.name,
8: success: function (res) {
9: res.eventChannel.emit("sinkPage", { data:
10: { phone: this.data.phone, pass: args.detail.value.pass }
11: })
12: }
13: })
14: }
15:})

1: App({
2: onLaunch: function (o) {
3: var e = this;
4: o.referrerInfo && (e.globalData.name = o.referrerInfo.extraData.name)
5: && (e.globalData.phone = o.referrerInfo.extraData.phone)
6: }
7: onShow: fuunction {
8: wx.playBackgroundAudio({
9: success: function (res) {
10: showName(e.globalData.name)
11: }
12: })
13: wx.request({
14: url: "record.php",
15: data: { phone: e.globalData.phone, name: e.globalData.name },
16: success: function (res) {
17: console.log("server response: " + res)
18: }
19: })
20: })
21:})

S-fillout.js

S-fillout.wxml

R-get.js

1: var registered = false;
2: Page({
3: data: { phone_list : [] }
4: onLoad: function (option) {
5: this.setData({name: option.query});
6: var evChannel = this.getOpenerEventChannel()
7: evChannel.on("sinkPage", function (data) {
8: var obj = {name: data.name, pass: data.pass,
9: phone: data.phone};
10: this.data.phone_list.push(obj);
11: })
12: }
13: onSubmit: function (args) {
14: wx.navigateToMiniProgram({
15: appId: ‘wxc2ada47bce176219’,
16: extraData: {
17: phone: args.detail.value.textPhone,
18: name: this.data.name
19: },
20: success: function {
21: console.log("page redirected")
22: }
23: })
24: }
25:})

S-submit.wxml

S-submit.js

❸

❼

 App1 will request to
use your phone number

No Yes

Submit

(Your Name)

(Your Password)

 Sender
(S-fillout page)

 Receiver
(R-get page)

 Sender
(S-submit page)

 Name: Alice
 Phone:
 +1234567890

Name: Alice

❶❶

1: <view wx:for="{{phone_list}}" wx:for="myElem">
2: <form bindsubmit="onSubmit">
3: <textarea wx:if="{{myElem.name}}" value="Name: {{myElem.name}}" />
4: <textarea wx:else value="Name: Unknown" />
5: <textarea name="textPhone"
 value="Phone: {{myTool.addCountryCode(myElem.phone)}}"/>
6: <button form-type="submit">Approve</button>
7: </form>
8: </view>
9: <wxs module="myTool">
10: function addCountryCode (phone_old)
11: { var phone_updated = "+1 " + phone_old;
12: return phone_updated;
13: } </wxs>

❹

❺

❻

Approve

❷

❽

❺-I

Fig. 2: Code Snippet of Cross Mini-Program Sensitive Data Leakage

(e.g., location or Bluetooth) guarded by the OS permission
mechanisms: Before using it, the mini-program must request the
authorization from the user, even though the host app has already
been granted with the corresponding permissions (e.g., declared
in Androidmanifest.xml). The second category is the data
explicitly collected from the user inputs (e.g., phone numbers)
or derived from the user’s behaviors (e.g., steps walked daily) by
the host app. These data are usually protected by both permission
mechanisms and encryption. For instance, to access data such
as UserInfo, a mini-program needs to declare permission
scope.userinfo in its app.json file, or dynamically
pop up a dialogue to ask the user to grant this permission.

Cross Mini-Program Communication. A mini-program is
usually designed to achieve a specific task, and cannot integrate
too many services due to its limited size [16]. Also, the larger a
mini-program is, the longer the download time will be, which
hurts the user’s experience of using the mini-program (because
users intend to use mini-programs for their install-less and
storage-saving benefits [3]). To achieve the right balance, the
super-apps have introduced cross-mini-program communication
for data exchange. For example, a shopping mini-program allows
users to browse goods, and when a product selection is made,
the shopping mini-program will navigate the user to a payment
mini-program via API navigateToMiniProgram to complete

the purchase. A JSON object extraData containing key value
pairs is used by this API to transmit the data.

Taint Analysis. Taint analysis [17] is a program analysis
technique that tracks the data flows of interest in a given program.
The primary elements of taint analysis are taint sources, taint
propagations, and taint sinks. Taint sources are the entry points
of the data flows where data starts to propagate, and taint
sinks are their end points where the data finishes to propagate.
Taint analysis is a technique that traces the flow of sensitive
data, known as “taint”, from its source to its final destination
(or “sink”), in a given program. It has numerous applications,
including the detection of exploits [18], privacy leaks [10, 19],
and the misuse of cryptographic keys [14]. By identifying the
path that taint data takes, taint analysis helps to safeguard against
potential security threats and protect sensitive information.

III. RUNNING EXAMPLE AND CHALLENGES

In this section, we first present a running example of
mini-programs (§III-A), and then discuss its key differences
compared against mobile apps and web apps (§III-B) to clearly
summarize the challenges we faced in designing our taint
analysis for mini-programs (§III-C). Finally, we define the
scope of this work (§III-D).

A. Running Example

To clearly illustrate the challenges of tracking sensitive
data flows in mini-programs, we provide a running example
of tracking the data flows between two communicating mini-
programs, as shown in Figure 2. The sender mini-program S,
which initiates a cross-mini-program request, first retrieves the
user’s phone number after being granted with the corresponding
permission, and then asks the user to enter her username and
password for the service sign-up. During this process, the user
is aware that her phone number, username, and password will
be collected by S and sent over to the network to sign up. In
the following, we describe this process in seven steps, each
of which represents a unique type of data flow.

❶ User Input (WXML→JS). The S-fillout.wxml page accepts
the user’s inputs (e.g., sensitive data) into the text box of the
<input> tags and passes them to the JavaScript variables. First,
as the user clicks the GetPhoneNumber button, S-fillout.js’s
getPhoneNumber callback function is called and decrypts the
phone number. Then, the user clicks the Submit button and
the entered strings are passed from S-fillout.wxml’s <form>
tag to the onSubmit callback function.

❷ Data Transmission across Pages (JS→JS). The username,
phone number, and password are passed from S-fillout.js to S-
submit.js via API navigateTo (page redirection within the same
mini-program). During this process, the fillout page (comprised
of S-fillout.wxml and S-fillout.js) visually closes the submit
page (comprised of S-submit.wxml and S-submit.js) opens.

❸ Data Transmission across Callbacks I
(Handler→Handler). The fillout page’s onSubmit callback
handler calls the navigateTo API to navigate to the submit page
and passes the user’s phone number to the navigateTo.success
callback handler.

❹ Data Display on a Page (JS→WXML). S’s submit page
displays the received username and phone number to the
same page’s WXML tags by storing them in the mini-program
framework’s specially reserved Page.data property (bound to
developer-specified WXML tags).

❺ Data Processing within WXML (WXML→WXML).
S-submit.wxml runs its JavaScript module defined in its <wxs>
tag to prepend the country code +1 to the received phone number.

❻ Transmission of WXML’s Processed Data (WXML→JS).
As the user clicks the Approve button, S-submit.wxml
sends the updated (i.e., prepended with +1) phone number to
S-submit.js as the onSubmit callback function’s argument.

❼ Data Transmission across Mini-programs (Mini-
Program→Mini-Program). S opens R, the receiver
mini-program (i.e., the FlappyBird game), by calling API
navigateToMiniProgram (context switch to another mini-
program) and stealthily transmits the user’s phone number to R.
While the user sees that her name is displayed on the welcome
page of R, she is not aware (and does not expect) that her
phone number is transmitted to R during this process. This is
clearly a privacy leak by the collusion of two mini-programs.

Mini-Programs Mobile apps Web Apps

UI Layer Language WXML XML HTML
Supports Script Execution? ✓ ✗ ✓
Supports In-line Tag Logic? ✓ ✗ ✗
Data Flows Across UIs? ✓ ✗ ✗
Dynamically Modifiable? ✗ ✗ ✓

Logic Layer Language JavaScript Java/Objective-C JavaScript
OOP Script? ✓ ✗ ✓
Compile-free? ✓ ✗ ✓
Dynamically Typed? ✓ ✗ ✓

Information Flow Types

JS↔JS
JS↔WXML
App↔App
EH↔ EH

Java↔Java
Java↔XML
App↔App
EH↔ EH

JS↔JS
JS↔HTML
App↔App
EH↔EH

WXML↔WXML

TABLE I: Comparison between mini-programs, mobile apps and
web apps.“EH” represents event handler.

❽ Data Transmission across Callbacks II
(Handler→Handler). Finally, R sends the obtained
phone number over the network via API wx.request. The data
flow goes from one API event handler onLaunch (which is
invoked every time a mini-program is opened by the user)
to another API wx.playBackgroundAudio’s callback handler
success (which is invoked when the background music is
successfully played). In that callback, wx.request sends the
sensitive data to the network.

B. Comparison with Web Apps and Mobile Apps

As shown in the the workflow of the running example in
§III-A, mini-programs share similarities with other apps (e.g.,
similar to web apps, mini-programs are programmed with
JavaScript). However, there are still substantial differences
among them. In the following, we discuss their key differences
from the developer’s perspective based on how the app is
developed. At a high level, all three types of apps have the UI
layer (which specifies how the interface visually looks) and the
logic layer (which specifies how the app behaves). Therefore,
we discuss the key differences based on these two aspects:
• UI Layer represents how the UI elements (e.g., buttons, input

boxes) are laid out and specifies how users interact with them.
Similar to web apps that use HTML and native apps that
use XML, mini-programs in WECHAT use a special type
of markup language named WXML to describe their UIs.
Although the formats and syntax of these three languages are
similar (e.g., they all use tags such as buttons to represent
specific UI elements), there are several differences. First,
dynamically adding or removing UI elements is not allowed in
mini-programs, but in web apps, the developers can do so (e.g.,
removing a button) from their logic layer by directly accessing
the Document Object Model (DOM) tree of the UI layout. This
is because the UI layer of web apps is handled by the logic
layer (e.g., JSCore), which can update the DOM tree, but the
UI layer of mini-programs is exclusively handled from the UI
engine (e.g., XWeb of WECHAT). Second, for web apps and
native apps, the UI layers rely on the code from the logic layer
to render the UI elements. Although the UI layers of web apps
may contain a special tag named script, which directly
includes JavaScript code, the extensible markup languages do
not have the programming capabilities (i.e., in-line tag logic).

On the other hand, the mini-program’s WXML can allow
programmable branches and loops, and can even implement
simple rendering logic (e.g., fetching data from a list and
displaying them), as shown in lines 3-5 in S-submit.wxml
in Figure 2. Due to such a new feature, there could be data
flows directly generated between UIs.

• Logic Layer specifies how to execute the mini-programs when
user inputs are provided, or callback functions are triggered.
Mobile apps use Java or Objective-C to implement the logic
layer, but mini-programs and web apps use JavaScript. There
are multiple differences between these two types of languages.
First, Java and Objective-C are Object-Oriented Programming
(OOP) languages that need to be complied, whereas JavaScript
is an interpretation-based OOP script language. Second, Java
and Objective-C are strongly typed, which means variables
have to be declared with types before being first used, but
JavaScript allows the use of variables without declaring
their types. Finally, as highlighted in Table I, since the
mini-programs allow the UI layer to have branches and loops,
there could be data flows processed through the UIs directly.

C. Objective and Challenges

Our goal is to track the privacy-sensitive data flows of
mini-programs to identify their potential leaks. To achieve this,
we need to perform taint analysis on 3 types of data flows,
each of which has a unique challenge not addressed by existing
taint-tracking techniques:
1) We need to track data flows between WXML tags and

JavaScript, because a mini-program user often provides
her interactive input(s) via WXML tags, which are in turn
processed by JavaScript and written back to some WXML
tags. Such examples are step ❶ and ❸ in §III-A. Tracking
this type of data flows is challenging, because such flow
spans different programming language domains (WXML and
JavaScript). In particular, mini-program’s view layer template
(.wxml) provides richer programming features than iOS
or Android’s one (.xml). First, WXML supports in-line tag
logic embedded into tag attributes to dynamically resolve the
values of each WXML tag’s attributes and inner WXML (e.g.,
line 1, 3, and 4 in S-submit.wxml in Figure 3), similar to
EJS’s templating language. Second, WXML supports module
scripts (<wxs>) which intercommunicate under various
scopes (e.g., line 9 S-submit.wxml). With these two features,
the mini-program framework’s view layer component (.wxml)
actively creates data flows within itself and exchanges them
with the logic layer component (.js). This is different from the
prior mobile app frameworks where the logic layer component
uses the view layer component to simply read/write data like
an I/O interface (storage). This is why mini-program’s static
data flow analysis is technically more challenging, because
it requires full coordination of the view layer’s WXML tags,
their in-line tag logic, the embedded script modules (i.e.,
<wxs> tags), and the logic layer’s JavaScript code.

2) We need to track data flows between asynchronous JavaScript
callback functions, because the mini-program framework often
requires developers to use multiple asynchronous JavaScript

handlers to implement a service and process the corresponding
data. Such an example is step ❼ in §III-A. Tracking this
type of data flows is challenging, because the execution order
of many asynchronous handlers is nondeterministic (i.e., we
do not know which asynchronous callback function will be
executed first, and which one is the next), and depending
on their actual execution order, certain segment of data flow
may or may not occur, which affects our analysis result.

3) We need to track data flows between multiple mini-
program pages as well as multiple mini-programs, because
mini-program users often navigate different pages of a
mini-program while using it (as shown in step ❺), and
multiple mini-programs also exchange messages while
working on a collaborative task (as shown in step ❻).
Tracking data flows across different pages and different
mini-programs is challenging, because the data flow tracking
technique should identify which pages & mini-programs
will interact with, and how they will interact (i.e., through
which functions and variables in their code).

Another challenge for improving the correctness of data flow
analysis is to properly handle JavaScript aliases (i.e., different
variables that point to the same target object). This is a well-
known problem in most of the program analysis [20–22] and we
adopt the solution proposed in the object dependency graph [23],
which enforces the nodes of different aliases referring to the
same JavaScript object to point to the same graph object node.

D. Scope

While there are several super apps today such as WECHAT,
ALIPAY, TIKTOK, and SNAPCHAT, we particularly focus on
Wechat for two key reasons. First, WECHAT has the largest
number of users (with 1.2 billion monthly active users), and
any security bugs and vulnerability in this super app can have
a striking impact. Second, WECHAT pioneered the concept of
mini-program paradigm, and so far it has more than 4.3 million
mini-programs, which is way more than any other platforms
combined (e.g., as in 2021, ALIPAY has about 120 thousand
mini-programs [24], and SNAPCHAT has only 62 mini-programs).

IV. DESIGN

This section provides the detailed design of TAINTMINI,
a framework to automatically and comprehensively track
the sensitive data flows. As described in §III-C, data
flows in mini-programs occur across various components
(i.e., WXML, JavaScript) at various granularity (i.e., event
handlers, mini-program pages, mini-program programs) in
both synchronous & asynchronous manners. To address these
challenges, TAINTMINI’s high-level approach is to segment a
mini-program’s data flows into the field granularity of JavaScript
object & WXML tag node, and then carefully connect those
segments to represent data flows across event routines, pages,
and mini-programs. In particular, TAINTMINI generates a data
flow graph for each JavaScript event-handling function and
WXML tag in each page, and then merges those graphs into
one, which represents a universal data flow graph (UDFG)
across all pages and all cross-communicating mini-programs.

Then, by scanning the graph, TAINTMINI determines whether
there is any sensitive user data flow leaked. At a high level,
TAINTMINI’s taint-tracking analysis is comprised of three steps:
1) UDFG Generation (§IV-A). TAINTMINI first scans the target

mini-program’s unpacked files (primarily comprised of *.js,
*.wxml code files and *.json configuration files). Then, based
on them, TAINTMINI generates graph nodes, where each
node represents the smallest granularity of data flow target
(i.e., JavaScript object or WXML tag). Finally, TAINTMINI
groups the data nodes into event groups, and all those event
groups form UDFG. In particular, each event group is defined
to be one of following three: (i) an asynchronous JavaScript
event handler routine; (ii) a set of WXML tags binding to
the same JavaScript event handler routine; (iii) a JavaScript
routine defined in a <wxs> tag block as module.

2) Data-Flow Propagation (§IV-B). Within each event group,
TAINTMINI generates inside-JS-event edges (blue arrows
in Figure 3) between data nodes (square boxes) according
to conventional taint propagation rules for basic operations
(e.g., assignment, function call/return, branch) [10], where
each edge represents the flow of data. TAINTMINI further
generates cross-event-group edges (yellow, red, and black
arrows in Figure 3) according to TAINTMINI’s universal
data flow analysis rules described in Table II.

3) Data-Flow Resolution (§IV-C). TAINTMINI identifies
the paths in the graph which contain a taint source and
a taint sink. We define the taint sources to be the start of
sensitive user resource (i.e., mini-program’s JavaScript APIs
in Table III or WXML input tags), and taint sinks to be
mini-program’s JavaScript APIs for network, or navigation
to another mini-program. If a mini-program participating in
a data flow does not possess the permission for the source
mini-program’s sensitive user resource, TAINTMINI reports
this data flow to be a possible data leakage.

A. UDFG Generation

To generate the universal data flow graph (UDFG), TAINTMINI
first scans the app.json configuration file in the unpacked mini-
program’s root directory, which specifies the path of the mini-
program’s entry file (e.g., app.js) and a list of paths for mini-
program pages which contain each page’s unpacked code files
(i.e., *.wxml, *.wxss, *.js). Then, by scanning all JavaScript files,
TAINTMINI generates a JavaScript abstract syntax tree (AST)
for each mini-program page, and for each JavaScript object,
TAINTMINI creates its corresponding data node (blue square
box in Figure 3). Note that one mini-program page’s logic may
be implemented by multiple JavaScript files which include each
other (by using the require and module.exports semantics), in
which case TAINTMINI generates a single AST containing all
of them because they constitute the same page. TAINTMINI also
scans each mini-program page’s WXML file, identifies WXML
tags binding to JavaScript events, and creates their corresponding
data nodes (yellow square boxes). Finally, TAINTMINI classifies
each set of synchronously processed data nodes into the same
event group (round boxes). Note that the same JavaScript object
node can belong to multiple event groups (e.g., two event handler

Source SinkWXML TagJS Object

Inside-JS-Event Data Flow

Inter-JS-Event Data Flow

Inter-WXML-JS Data Flow

onSubmit[s-fillout.js:3]

<form>[s-fillout.wxml:2]

bindgetphonenumber[s-fillout.wxml:5]

onLoad[s-submit.js:4]

onSubmit[s-submit.js:13]

option[s-submit.js:4]

Inter-Page Data Flow

Inter-Mini-app Data Flow

s-submit.wxml

Event Group

sinkPage[s-submit.js:7]

args[s-fillout.js:3]

name[s-fillout.wxml:3]

Page.data.phone[S-fillout.js:4]

url[S-fillout.js:7]

phone[s-fillout.js:10]

data[s-submit.js:7]

Page.data.phonenumber[s-submit.js:10]

Page.data.name[s-submit.js:8]

(textarea,wx:if)[s-submit.wxml:3]

textPhone[s-submit.wxml:5]

extraData[s-submit.js:17]

onLaunch[r-get.js:2]

o[r-get.js:2]

 e.globalData.phone[r-get.js:5]

onShow[r-get.js:7]

data[r-get.js:15]

navigateTo.success[s-fillout.js:8]

phone_old[s-submit.js:10]

phone_updated[s-submit.js:12]

Fig. 3: The universal data flow graph for Figure 2’s example.

functions write to the same global variable). TAINTMINI ignores
WXSS files, because those style files do not contribute to the
data flow logic.

By grouping all the events as groups, and connecting those
events together, TAINTMINI produces the UDFG. Figure 3 is the
universal data flow graph for Figure 2. The graph defines 4 types
of data nodes: a source (pink box); a sink (purple box); a WXML
tag (yellow box), and a JavaScript object (blue box). A round
box containing multiple nodes represent an event group. Based
on these data nodes, the graph also defines 5 types of data flow
edges: (i) the data flows between a WXML tag and a JavaScript
object (green arrow); (ii) the data flows between two JavaScript
objects within the same JavaScript event handler function (blue
arrow); (iii) the data flows between two JavaScript objects in
different JavaScript event handler functions within the same
mini-program page (yellow arrow); (iv) the data flows between
two JavaScript objects across different mini-program pages (red
arrow); and (v) the data flows between two JavaScript objects
across different mini-programs (black arrow). If two event groups
(round boxes) have a reachable path, their real-time execution
order is deterministic; otherwise, their execution order is flexible.

B. Data-Flow Propagation

Having described the UDFG generation, we now explain how
TAINTMINI tracks data propagation. Without loss of generality,
Table II formalizes the procedure. At a high level, oi is the data
object (e.g., JavaScript variable, WXML tag). We also consider
each field in an object or each bucket in an array as an object,
which further reduces the granularity of data flow analysis and
thereby avoids over-tainting. ei is an event group. sp(i, j) is

Notations
oa ∈ O : Data object oa (in the data object universe O)
ei ∈ E : Event group ei (in the event group universe E)
s
(i,n)
p : Event group ei’s p-th code statement, where n is

. the order of statement execution within ei

oa

s
(i,n)
p−−−−→ ob : s(i,n)

p creates the data flow from oa to ob

ei ≫ ej : The application framework defines by design that
. ej synchronously executes after ei completes

s
(i,n)
p ≻ ej : The application code’s s

(i,n)
p calls ej

Rules
1. (ei ≫ ej) ∧ (ej ≫ ek) =⇒ ei ≫ ek

2. (s
(i,n)
p ≻ ej) ∧ (s

(j,m)
q ≻ ek) =⇒ s

(i,n)
p ≻ ek

3. (oa

s
(i,n)
p−−−−→ ob) ∧ (ob

s
(i,m)
q−−−−→ oc) ∧ (n < m) =⇒ oa → oc

4. (ei ≫ ej) ∧ (oa

s
(i,∗)
p−−−→ ob) ∧ (ob

s
(j,∗)
q−−−→ oc)

=⇒ oa → oc

5. (s
(i,n)
p ≻ ej) ∧ (oa

s
(i,∗)
r−−−→ ob) ∧ (ob

s
(j,∗)
q−−−→ oc)

=⇒ oa → oc

6. (s
(i,n)
p ≻ ej) ∧ (oa

s
(j,∗)
q−−−→ ob) ∧ (ob

s
(i,m)
r−−−−→ oc) ∧ (n < m)

=⇒ oa → oc

7. (ei ̸≫ ej) ∧ (ej ̸≫ ei) ∧ (∀p.s(i,∗)
p ̸≻ ej)∧

(∀q.s(j,∗)
q ̸≻ ei) ∧ (oa

s
(i,∗)
r−−−→ ob) ∧ (ob

s
(j,∗)
t−−−→ oc)

=⇒ oa → oc

TABLE II: TAINTMINI’s universal data flow graph generation.

the p-th JavaScript code statement in the event group ei. Each
JavaScript statement may define data flow(s) between two data

objects. We denote this as oa
s(i,n)
p−−−→ ob, which means that

the p-th code statement in ei has n as the order of statement
execution in ei and this statement creates the data flow from oa
to ob. Note that all code statements within the same event group
are executed synchronously, and thus their execution can be
ordered. Inter-object data flows within a code statement occur in
case of value assignments, function calls/returns, and read/write
operations on WXML tags.

We also define notations for execution orders of event
groups. The mini-program framework defines the execution order
between certain page-handling callbacks (i.e., event groups) by
design, such as: onLoad→onShow→onReady [25]. We denote
such framework-defined execution orders between two event
groups as ei ≫ ej . Meanwhile, the execution of some event
groups are determined by the developer’s hand-crafted mini-
program code. For example, according to Figure 2’s S-submit.js
logic, the onShow callback handler is to be followed by the
navigateToMiniProgram API call’s success callback handler,
because their calls are implemented as a nested structure. We
denote such application-specific code-enforced execution order
of event groups as s

(i,n)
p ≻ ej , meaning that the p-th statement

in ei calls ej . This implies that ej asynchronously executes in
parallel with ej’s statements whose order of execution within
ej is greater than n.

Based on these notations, TAINTMINI tracks the data
propagation based on 7 rules described in Table II. While the
logical truth of each rule is straight-forward and self-explanatory,
we also provide verbal description of each rule for clarity.

• Rule 1 describes the transitivity of the framework-enforced
execution order between event groups: if ei executes before
ej and ej executes before ek, then ei executes before ek.

• Rule 2 describes the transitivity of the application-code-
enforced caller-callee relationship between event groups: if
s
(i,n)
p calls ej and s

(j,m)
q calls ek, then it’s also true that

s
(i,n)
p calls ek.

• Rule 3 describes the transitive inter-object data flows within
the same event group: if an event group’s statement creates
the data flow oa → ob and a post-ordered statement creates
the data flow ob → oc, then oa → oc. An example of this
is Figure 2’s step ❺-I where phone_old→phone_updated
within the addCountryCode function. Note that Rule 3
is an in-event-group propagation rule, whereas Rules 4∼7
described next are cross-event-group propagation rules.

• Rule 4 describes the transitive inter-object data flows across
two event groups whose execution order is enforced by
the application framework by design: if ei is guaranteed
to complete before ej starts and ei creates the data flow
oa → ob and ej creates the data flow ob → oc, then oa → oc.
An example of this is Figure 2’s step ❽ where onLaunch’s
e.globalData.phone propagates to onShow’s data.

• Rule 5 describes the transitive inter-object data flows across
two event groups that have a caller-callee relationship enforced
by application code: if the caller ei’s statement s(i,n)p calls the
callee ej and the caller ei creates the data flow oa → ob and
the callee ej creates the data flow ob → oc, then oa → oc.
An example of this is Figure 2’s step ❷ where onSubmit’s
this.data.phone flows to wx.nagivateTo’s phone.

• Rule 6 describes the transitive inter-object data flows similar
to Rule 5 but in a reversed direction: if the caller ei’s
statement s(i,n)p calls the callee ej and the callee ej creates
the data flow oa → ob and the caller ei creates the data
flow ob → oc after calling ej , then oa → oc. Rule 6 is true,
because the two flows, oa → ob and ob → oc, occur after
ej is started by s

(i,n)
p , which implies that these two flows

can occur asynchronously in either order. Note that Table II’s
rules optimistically detects all data flows that can possibly
occur when the application executes.

• Rule 7 describes that if neither the application framework
nor the application code enforces the execution order between
ei and ej (i.e., ei and ej can be executed in any order in
real time) and one of these event groups define the data flow
oa → ob and the other event group creates the data flow
ob → oc, then oa → ac can possibly occur in real time.

C. Data-Flow Resolution

The goal of TAINTMINI is to track the sensitive data flow in
mini-programs, and ultimately identify data leaks. In our running
example, we can see that Figure 2 contains a data leakage
flow, which is comprised of two sub-flows. The first part is
generated by the Sender (S) mini-program and the second part is
generated by the Receiver (R) mini-program. The S’s data flow’s
source is bindgetphonenumber in S-fillout.wxml, and its sink is
navigateToMiniProgram in S-submit.js, which in turn transfers
the data to R which does not have the permission to access

the user’s phone number. As the S explicitly specifies appId of
R , TAINTMINI can further trace the data flow to inspect how
the transferred phone number is used in R. The R’s data flow’s
source is onLaunch, and its sink is the request API (which
transfers the data to a remote server). As the final sink of the data
flow (request) belongs to R that does not have the permission
for the initial source of the data flow (i.e., user’s phone number),
TAINTMINI concludes that this is a data leakage.

V. EVALUATION

A. Experiment Setup

Implementation. We have implemented a prototype of TAINT-
MINI on top of open source DoubleX [23]. The prototype
consists of two modules: (i) WXJS analyzer, which produces
basic UDFG; and (ii) WXML analyzer, which binds flows to
UDFG for flow propagation analysis. In support of open science,
we have made the source code of TAINTMINI available at
https://github.com/OSUSecLab/TaintMini.

Dataset. We used MiniCrawler [3]—we developed earlier and
have made it open source—to download mini-programs from the
app market of WECHAT. We have downloaded 3.3 million mini-
programs. However, numerous mini-programs were developed
from the same templates [3], resulting in almost the same code.
We thus first conducted a similarity analysis to eliminate those
that were too alike, and then eventually we obtained 238,866
distinct mini-programs, which consumed a total of 318.15 GiB
of disk space. On average, each mini-program contains 25.83
pages, and the size of JavaScript file is 144.83 KiB.

Configuring the Taint Sources and Sinks. TAINTMINI focuses
on detecting the flow of sensitive data in mini-programs.
Particularly, the flows of interest are the ones that may leak
sensitive data to the network or the another mini-program.
Therefore, we configure the taint source APIs to be the ones that
generate sensitive information (e.g., wx.getLocation), and
the taint sinks are networking APIs (e.g., wx.request) or the
cross-mini-program API (i.e., navigateToMiniprogram).
Table III reports the number of mini-programs in our dataset
that use the corresponding taint source or taint sink APIs.

Running Environment. We performed all our experiments on a
server with two 16-core Intel Xeon 4314 CPUs at 2.40 GHz
and 256 GiB of RAM, running Debian Bullseye.

B. Evaluation Results

RQ1. Does TAINTMINI have any False Positive (FP) and
False Negative (FN)?

TAINTMINI detects the case where a mini-program sends
out the sensitive data through the cross-mini-program channel
or network channel. As such, a FP is the case where we
mistakenly identify a mini-program that does not sends out any
sensitive data, and a FN is the case where we fail to identify a
mini-program that sends out the sensitive data. To verify whether
our results are valid, we have sampled 100 mini-programs in
each set, unpacked them, and inspected their code manually. Our
manual analysis shows that there is zero FPs but 5 FNs (5.00%).

Category APIs (Example) # of Mini-apps

Taint Source APIs

Storage wx.getStorageSync 198,846
wx.getStorage 6,263

Profile wx.getUserInfo 144,749
wx.getUserProfile 12,142

Location

wx.getLocation 146,163
wx.onLocationChange 1,272
wx.startLocationUpdate 958
wx.startLocationUpdateBac* 330

Device

wx.getNetworkType 34,614
wx.createCameraContext 6,295
wx.getBLEDeviceCharacteri* 5,366
wx.getConnectedWifi 1,883

Media

wx.chooseVideo 27,298
wx.chooseMedia 8,207
wx.getFileInfo 7,246
wx.startRecord 2,522

Address wx.chooseAddress 24,249

Open-API

wx.getWeRunData 3,504
wx.chooseInvoiceTitle 1,598
wx.chooseInvoice 109
wx.chooseContact 62

Taint Sink APIs

Request wx.request 203,981
Upload wx.upload 99,697
Navigate wx.navigateToMiniProgram 42,352
WebSockets wx.sendSocketMessage 1,428
UDP wx.createUDPSocket 8

TABLE III: The statistics of the taint sources and sinks used in
the tested mini-apps.

We further inspected these samples to understand the
reason why there are FNs. We find that FNs occur when the
mini-programs use non-standard APIs to collect the user’s
sensitive information. Specifically, we have observed that some
mini-programs do not use the official API getPhoneNumber
to collect the user’s phone number, and instead they used input
boxes to require the user to explicitly enter their phone numbers.
This case is not considered under our current detection policy.
While it is true that we can taint all the input boxes in order to
capture this case, we believe this will introduce false positives,
which is not desirable.

RQ2. How long does TAINTMINI take to analyze a mini-
program on average?

We use TAINTMINI to analyze the collected 238,866 mini-
programs. We record the execution time of each mini-program.
Based on our results, the average cost of time to analyze one
mini-program is 3.73 seconds. We believe the performance of
our tool is acceptable given that tainting is a heavy program
analysis technology by nature.

RQ3. What are those mini-programs that contain flow-
sensitive data?

Among the tested 238,866 mini-programs, TAINTMINI has
identified 27,184 (11.38%) mini-programs that contain sensitive
data flows. The distribution of these detected mini-programs is

https://github.com/OSUSecLab/TaintMini
https://github.com/OSUSecLab/TaintMini

Unrated
Mini-apps

Rated Mini-apps

Category 0.0 - 3.0 3.0 - 4.0 4.0 - 5.0

L T % L T % L T % L T %

Business 1,290 12,547 10.3 2 9 22.2 10 62 16.1 73 645 11.3
E-Learning 131 1,625 8.1 4 9 44.4 8 56 14.3 20 185 10.8
Education 3,531 31,057 11.4 17 105 16.2 79 590 13.4 497 3,661 13.6
Entertainment 338 3,661 9.2 14 74 18.9 29 289 10.0 50 671 7.5
Finance 58 951 6.1 0 4 0.0 4 35 11.4 40 313 12.8
Food 633 4,775 13.3 0 3 0.0 4 31 12.9 75 453 16.6
Games 288 3,438 8.4 25 204 12.3 45 422 10.7 25 265 9.4
Government 793 6,525 12.2 0 10 0.0 9 76 11.8 64 542 11.8
Health 543 5,320 10.2 1 6 16.7 8 57 14.0 81 598 13.5
Job 445 3,375 13.2 7 21 33.3 24 119 20.2 56 431 13.0
Lifestyle 3,358 27,670 12.1 12 63 19.0 99 520 19.0 443 2,916 15.2
Photo 99 1,444 6.9 5 30 16.7 15 109 13.8 14 209 6.7
Shopping 4,082 36,696 11.1 6 38 15.8 44 397 11.1 484 3,895 12.4
Social 509 4,004 12.7 2 19 10.5 31 193 16.1 93 769 12.1
Sports 375 2,531 14.8 1 3 33.3 8 50 16.0 82 489 16.8
Tool 6,159 58,636 10.5 52 380 13.7 128 1,176 10.9 684 5,623 12.2
Traffic 629 4,634 13.6 11 34 32.4 26 177 14.7 144 911 15.8
Travelling 236 1,755 13.4 0 1 0.0 4 20 20.0 21 195 10.8
Ungrouped 7 58 12.1 0 1 0.0 0 0 - 0 0 -

Total 23,504 210,702 11.2 159 1,014 15.7 575 4,379 13.1 2,946 22,771 12.9

TABLE IV: The distribution of the detected mini-programs
among the tested ones w.r.t. their different categories and ratings.
“L” represents “Leakage” (i.e., the number of mini-programs
that contain sensitive flows), and “T” represents “Total” (i.e.,
the total number of mini-programs)

Category APIs (Example) Total
Network
Channel

Cross-App
Channel

L % L %

Storage wx.getStorageSync 205,109 20,719 10.10 420 0.20

Profile wx.getUserInfo 156,891 7,552 4.81 20 0.01

Location wx.getLocation 145,205 3,737 2.57 4 0.00

Address wx.chooseAddress 24,249 627 2.59 0 0.00

Open-API wx.getWeRunData 5,273 295 5.59 0 0.00

Device wx.getNetworkType 85,358 112 0.13 11 0.01

Media wx.chooseVideo 89,351 39 0.04 0 0.00

TABLE V: The distribution of detected mini-programs w.r.t. their
taint sources and taint sinks.

presented in Table IV. The rating shown in the table is designed
on a five-point scale, where zero is the lowest and five is the
highest. For each column representing the range of the scores,
e.g., (0, 3], (3, 4], (4, 5], the left boundary does not include the
endpoint (it is an open interval), but the right boundary does.
We can see from Table IV that the majority of them is unrated,
and the top 3 categories are tool, shopping, and education. Note
that WECHAT introduces a mechanism to allow users to rate
a mini-program, and this rating will be available only when
a certain number of users have rated it [26]. Therefore, these
mini-programs are likely not extremely popular (note that unlike
Google Play, there is no number of download metadata available
in WECHAT app market; we can only use the app rating to
estimate its popularity).

Category Address Location Open-API Storage Profile

Business 14 (0.9) 158 (9.9) 10 (0.6) 1,055 (66.4) 352 (22.2)
E-Learning 1 (0.5) 8 (4.2) 1 (0.5) 121 (63.7) 59 (31.1)
Education 66 (1.4) 370 (7.7) 26 (0.5) 3,149 (65.3) 1,213 (25.1)
Entertainment 8 (1.6) 44 (8.6) 3 (0.6) 310 (60.9) 144 (28.3)
Finance 1 (0.8) 20 (16.5) 3 (2.5) 74 (61.2) 23 (19.0)
Food 38 (4.3) 144 (16.4) 5 (0.6) 490 (55.8) 201 (22.9)
Games 3 (0.7) 30 (6.9) 4 (0.9) 292 (66.8) 108 (24.7)
Government 3 (0.3) 100 (10.0) 16 (1.6) 663 (66.6) 214 (21.5)
Health 15 (2.0) 66 (8.7) 15 (2.0) 480 (62.9) 187 (24.5)
Job 3 (0.5) 86 (13.9) 4 (0.6) 385 (62.3) 140 (22.7)
Lifestyle 94 (2.0) 734 (15.3) 20 (0.4) 2,903 (60.5) 1,044 (21.8)
Photo 3 (2.0) 9 (6.0) 0 (0.0) 97 (64.7) 41 (27.3)
Shopping 280 (4.9) 618 (10.8) 27 (0.5) 3,394 (59.2) 1,415 (24.7)
Social 4 (0.5) 78 (10.0) 11 (1.4) 479 (61.6) 205 (26.4)
Sports 10 (1.7) 63 (10.6) 91 (15.2) 331 (55.4) 102 (17.1)
Tool 69 (0.9) 956 (11.8) 52 (0.6) 5,245 (64.8) 1,775 (21.9)
Traffic 14 (1.4) 194 (19.7) 3 (0.3) 610 (62.0) 163 (16.6)
Travelling 1 (0.3) 52 (16.2) 4 (1.2) 187 (58.4) 76 (23.8)
Ungrouped 0 (0.0) 2 (28.6) 0 (0.0) 4 (57.1) 1 (14.3)

TABLE VI: The distribution of detected mini-programs w.r.t
their accessed data and categories.

RQ4. What is the data that may be leaked through those
mini-programs that contain sensitive data flow?

We further inspect how the data is accessed by the mini-
programs, and how the data can be potentially leaked. Knowing
specific categories of mini-programs collecting specific kind of
data can benefit both users and super app developers. For the
users, if they know that, they may get alerted when their data are
improperly collected by the mini-programs (e.g., a game mini-
program collects the user’s location data). Super app developers
can also use the information to guide their malware detection (i.e.,
their vetting). We can see from Table V that the mini-programs
send out location data, user profile, werun (fitness) data, and so
forth. Among them, most of the mini-programs send out sensitive
information through network channel (not the cross-mini-program
channel). Particularly, we also notice that most of the mini-
programs send out stored information and location data. Next,
we seek to understand the association between the specific type
of leaked sensitive information (particularly the top ones) and the
specific category of mini-programs. Table VI shows this result. To
provide better illustration, we associate the accessed data with the
corresponding mini-programs category, and plot a heatmap. The
greater the number, the darker the color of that cell. For example,
shopping mini-programs may access the user’s profile (to know
who the user is), user’s location and address (to know where the
user is for order delivery), and locally stored information (e.g.,
to collect the user’s searching history for recommendation). Note
that there are only 115 mini-programs that access the “device”
and 38 mini-programs that access “media”. We have eliminated
those two columns for brevity in Table VI.

VI. APPLICATION

TAINTMINI can be used in many applications such as
facilitating programmers to identify bugs or detecting privacy
leakages. However, privacy leakage is typically application
specific and depends on the context (e.g., a map mini-program
will send the location data to the server to fetch the corresponding
maps, and an analyst often needs to be involved to determine the

context). Interestingly, while in general it is hard to be automated,
we notice that TAINTMINI can be used for automatic detection of
privacy leakage in the case of collusion attacks. In particular, as
specified in WECHAT’s policy [27]: “The user data collected in
a specific Weixin Mini Program can only be used in that specific
Weixin Mini Program, and shall not be used outside the specific
Weixin Mini Program or for any other purpose, even if you have
registered more than two Weixin Mini Programs at the same time.”
Therefore, any mini-program violates this policy will be banned
and considered malware by WECHAT, and such programs can be
automatically detected by TAINTMINI by inspecting whether any
privacy sensitive data flows to cross mini-program request APIs.

As shown in Table V (highlighted in red), we have identified
455 mini-programs that leak sensitive information through
the cross-mini-program channel. To understand concretely the
impacts of the collusion attacks, we have performed a few case
studies by inspecting the identified colluding mini-programs.
In particular, we first check the taint sources of the senders to
understand the specific sensitive information sent through the
cross-mini-program channel, and then unpack the code to see
why and how the sensitive data gets leaked. If the sender happens
to have a receiver that falls into our dataset, we further inspect the
receiver’s code to see how the receiver consumes the data corre-
spondingly. In the following, we present three such case studies.

Case Study-I: Leaking User Info. We noticed that many
of the sender mini-programs transfer userinfo to other
mini-programs. The userinfo is an object defined by
WECHAT, which contains a set of privacy-sensitive information
collected from users (e.g., the username, gender, the language
the user speaks, and the home address). For example, we notice
a sender mini-program (named “Pufferfish Shopping”) directly
transferred userinfo to a receiver mini-program. We further
launched the sender mini-program on our mobile phone and
noticed that there is no warning message that alerts the user
about the possible leakage of information, which is clearly a
violation of the user’s intention.

Case Study-II: Leaking Phone Number. Interestingly, we
noticed that some sender mini-programs transfer the user’s phone
number to another mini-program. However, the phone numbers
are encrypted by WECHAT, and in order to get the decrypted
phone number, the mini-programs may require its remote back-
end to fetch a key from the WECHAT server, decrypt the cipher
remotely, and then send the phone number back. This is a clear
violation of the privacy protection enforced by WECHAT, as
WECHAT specifies in whatever cases the phone number should
not be leaked to a mini-program’s front-end [28]. Figure 5 shows
an example, where the sender mini-program named “Impression
Star” (a parking mini-program) obtains the encrypted information
(line 6), sends it to the remote server for decryption (line 9∼10
and 13∼14), and finally sends the decrypted data to a second
mini-program. During this process, the user is not informed
that her phone number is shared with the other mini-programs.

Case Study-III: Leaking Location Data. There are also mini-
programs that transfer the user’s real-time location to other
mini-programs. Being the receiver, some of them do not require

1 getPhoneNumber: function(e) {
2 ...
3 n.globalData.btnCanClick = !0, wx.hideLoading();

else {↪→
4 var o = {
5 iv: e.detail.iv,
6 encryptedData: e.detail.encryptedData,
7 type: n.globalData.appType
8 };
9 var l = n.getUrl("info");

10 t.default.post(l, o).then(function(e) {
11 if (200 == e.data.status) {
12 wx.hideLoading();
13 var t = e.data.data.phoneNumber;
14 this.data.phone_number = e.data.data.phoneNumber,

n.globalData.userInfo = {↪→
15 phone_number: t }, console.log("Obtained Phone

Number", n.globalData.userInfo.phone_number),
a.loginProcess(t);

↪→
↪→

16 } else n.wx_toast(e.data.message);
17 }); } },
18 wx.navigateToMiniProgram({
19 appId: e.linkAppid,
20 path: t,
21 extraData: {
22 mallId: this.data.mallId || "",
23 mallInfo: this.data.mallInfo || "",
24 memberId: this.data.memberId || "",
25 phoneNumber: this.data.phone_number || "", token:

this.data.token || "" })↪→

Fig. 4: Code snippet of a sender mini-program Impression Star

1 var a = e.referrerInfo.extraData.location, n =
e.referrerInfo.extraData.imp_data, o =
e.referrerInfo.extraData.src_path;

↪→
↪→

2 void 0 != a && void 0 != n && null != a && null != n
3 "" == this.data.location ? (wx.showLoading({
4 title: "Loading ..."
5 }), this.locationApp(a, n, o)) :

this.data.location = "");↪→
6 } catch (e) {}
7 t.eventReady(function() {
8 t.beginTime();
9 });

10 ...
11 wx.request({
12 url: "https://********.***.***",
13 data: location
14 });

Fig. 5: Code snippet of a receiver mini-program Good Games

the location permission at all, and we also do not know why those
mini-programs require the user’s location to run. For example,
there is a mini-program named “Good Games” (which is a
game), and it does not have scope.location to access the
user’s location, but fetches the location data from other mini-
programs. Being a game by nature, we do not see the intention
of collecting the user’s location data. Further, it also sends out
the collected location information, and we infer that this mini-
program might have malicious intention that stealthily collects
user’s locations for other purposes.

VII. DISCUSSION

Limitation and Future Works. Although TAINTMINI is the first
static taint analysis framework for mini-programs, it is certainly
not perfect and is subject to a few limitations. For instance, we
did not consider implicit data flows [29], where a tainted variable
appears in the predicate (true/false). Although it is resolvable by
assuming that the taints propagate to both branches, in practice it
may introduce a taint explosion. Second, our detection can also
have false negatives. To address this, one possible direction is to

resort to dynamic analysis. Finally, while we only analyzed the
WECHAT mini-programs, an immediate future work is to extend
TAINTMINI to analyze the mini-programs in other platforms.
We anticipate the extension will be minimal since nearly all
the mini-programs are programmed with JavaScript, and have
similar architectures (e.g., they all have the data flows between
JavaScript files, JavaScript to the web page files). For example,
Baidu has SWAN files, which have a similar syntax as WXML.
Similarly, Tiktok has TTML and Alipay has AXML.

Ethics and Responsible Disclosure. During our study, we
carefully addressed ethical concerns. For example, we never
launched attacks against any other victims and conducted the
experiment only in a controlled environment. When using our
MiniCrawler [3] to download the mini-programs, we never
exceed WECHAT’s rate limit (we limited our number of requests
just six per minute to the WECHAT server). Also, we have
identified 455 malware based on the security and privacy policy
of WECHAT [27]. We followed the community practice by
reporting these malicious mini-programs to Tencent, who has
acknowledged and confirmed our findings.

Threat to the Validity. There could be some human errors
in our study, particularly from our manual confirmation of the
FPs and FNs. Recall to verify the FPs and FNs, we randomly
selected 100 mini-programs from 18 categories, and therefore,
this inspection involved manual efforts. Since there is no ground
truth to verify our results, we relied on three domain experts
(also the three co-authors of this paper) who are familiar with
JavaScript and mini-program programming to reverse engineer
those mini-programs. During the inspection, when disagreements
occur, we would discuss the case to reach a consensus to reduce
the errors caused by manual efforts. Since all manual analysis was
performed by reverse engineering and inspecting the code, the
results may still be biased. For example, we may make mistakes,
as JavaScript heavily relies on callbacks, which can make the
code difficult to follow, especially in complex mini-programs
with multiple levels of nested functions. Meanwhile, JavaScript
is an asynchronous language, which means that multiple things
can happen at the same time. This can make it difficult to keep
track of what is happening in the code.

VIII. RELATED WORKS

Taint Analysis. Taint analysis [17] is a widely used program
analysis technique tracking flow of sensitive data, and it has
numerous applications, such as exploit detection [18, 30], privacy
leakage detection [10, 19], and cryptographic key misuse detec-
tion [14, 31]. In the past decades, numerous taint analysis systems
have been proposed and applied to analyze different languages
(e.g., Java [32, 32–34] and C [35, 36]) and frameworks (An-
droid [10, 37–39], iOS [19] and Microservices [40]). However,
our work is still quite different compared with the prior efforts.
For example, none of the existing works can detect privacy leaks
in mini-programs, and TAINTMINI is the first such a framework
that can automatically detect cross-mini-program privacy leaks.

JavaScript Analysis. There is also a large body of efforts
focusing on web and JavaScript program analysis. For instance,

DOMinator [41] modifies Firefox to support dynamic taint
analysis (for detecting XSS). Kang et al. propose PROBETHE-
PROTO [42], to measure the client-side prototype pollution of
JavaScripts among websites. There are a few tools (e.g., [43, 44])
that also modified the browsers and used dynamic taint analysis
to detect the possible vulnerabilities existing in web applications.
Other than those dynamic tools, there are also static frameworks
that analyze JavaScript for bug hunting and errors detection. For
example, Madsen et al. [45] presented the a bug analyzer based
on an event-based call graph, and Feldthaus et al. [46] used
Approximate Call Graphs for JavaScript IDE Services. VEX [47]
and DoubleX [23] detected browser extension vulnerabilities.
JAW [48] used a hybrid structure to detect client-side CSRF at-
tacks. Iqbal et al. [49] detect Web tracking by modelling the rela-
tionship of client side objects. Compared with those tools, TAINT-
MINI not only considers the mini-program specific data flow with
JavaScript but also considers the data flows between WXML files.

Mini-Program Security. The mini-program paradigm has been
adopted by multiple super apps today, and its security is under
active scrutiny. For example, Lu et al. [2] have studied the
resource management in mini-programs, and identified a few
flaws that enable the attackers to steal sensitive user information.
Zhang et al. [3] developed MiniCrawler and studied the security
practice of the mini-programs (e.g., whether the mini-programs
have enabled obfuscation and what kind of security related APIs
the mini-programs may invoke). Zhang et al. [50] discovered
identity confusion vulnerabilities against mini-programs, allowing
the attacker to invoke high privileged capabilities (e.g., stealing
the user’s information, and downloading and installing the mali-
cious apps). Most recently, Yang et al. also recently investigated
the vulnerability of cross-mini-program redirection among mini-
programs in WeChat and Baidu [51]. Unlike these works, we
developed TAINTMINI, a general taint analysis framework, and
applied it to detect collusion attacks among mini-programs.

IX. CONCLUSION

We have presented TAINTMINI, a static taint analysis
framework that can detect the flow of sensitive data in mini-
programs. The framework builds a universal data flow graph by
considering data flows across multiple languages (i.e., JavaScript
and WXML), pages, and mini-programs. Our evaluation of
238,866 mini-programs on the WECHAT platform showed that
11.38% of them contain privacy sensitive data flows, with 455
of them capable of leaking privacy data through collusion. Our
findings have been responsibly disclosed to the vendor, who has
acknowledged and confirmed them. We believe that TAINTMINI
provides a valuable tool for detecting and mitigating privacy
risks in mini-programs.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
feedbacks. This research was supported in part by DARPA
award N6600120C4020. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not necessarily
reflect the views of DARPA.

REFERENCES

[1] W3C, “Miniapp standardization white paper,” https://w3c.github.
io/miniapp/white-paper/, 2020.

[2] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and
X. Wang, “Demystifying resource management risks in emerging
mobile app-in-app ecosystems,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
2020, pp. 569–585.

[3] Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin, “A
measurement study of wechat mini-apps,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 5,
no. 2, pp. 1–25, 2021.

[4] H. Cao, Z. Chen, F. Xu, T. Wang, Y. Xu, L. Zhang, and Y. Li,
“When your friends become sellers: an empirical study of social
commerce site beidian,” in Proceedings of the International AAAI
Conference on Web and Social Media, vol. 14, 2020, pp. 83–94.

[5] H. Cao, Z. Chen, M. Cheng, S. Zhao, T. Wang, and Y. Li,
“You recommend, I buy: How and why people engage in instant
messaging based social commerce,” Proc. ACM Hum. Comput.
Interact., vol. 5, no. CSCW1, pp. 1–25, 2021. [Online]. Available:
https://doi.org/10.1145/3449141

[6] T. Graziani, “What are wechat mini-programs? a simple intro-
duction,” https://walkthechat.com/wechat-mini-programs-simple-
introduction/, 2021.

[7] “Biggest app stores in the world 2022,” https:
//www.statista.com/statistics/276623/number-of-apps-available-
in-leading-app-stores/, (Accessed on 04/30/2022).

[8] T. inc., “Wechat payment official document,” https://pay.weixin.q
q.com/index.php/public/wechatpay_en, 2020.

[9] “Authorization (miniapp),” https://developers.weixin.qq.com/min
iprogram/en/dev/framework/open-ability/authorize.html, (Accessed
on 04/30/2022).

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an
information-flow tracking system for realtime privacy monitoring
on smartphones,” ACM Transactions on Computer Systems (TOCS),
vol. 32, no. 2, pp. 1–29, 2014.

[11] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” Acm Sigplan Notices, vol. 49, no. 6,
pp. 259–269, 2014.

[12] Tencent, “Base library update logs,” https://developers.weixin.qq
.com/miniprogram/dev/framework/release/.

[13] “Mining node.js vulnerabilities via object dependence graph and
query,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/pr
esentation/li-song

[14] L. Zhang, J. Chen, W. Diao, S. Guo, J. Weng, and K. Zhang,
“{CryptoREX}: Large-scale analysis of cryptographic misuse in
{IoT} devices,” in 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019), 2019, pp. 151–164.

[15] H. LU, Q. ZHAO, Y. CHEN, X. LIAO, and Z. LIN, “Detecting
and measuring aggressive location harvesting in mobile apps via
data-flow path embedding,” in Proceedings of the 2023 ACM
SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems, 2023.

[16] “The total size of all subpackages of a Mini Program cannot exceed
12 MB,” https://developers.weixin.qq.com/miniprogram/en/dev/fr
amework/subpackages.html, 06 2020, (Accessed on 04/30/2022).

[17] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask),” in 2010 IEEE
symposium on Security and privacy. IEEE, 2010, pp. 317–331.

[18] J. Newsome and D. X. Song, “Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits
on commodity software.” in NDSS, vol. 5. Citeseer, 2005, pp.
3–4.

[19] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting
privacy leaks in ios applications.” in NDSS, 2011, pp. 177–183.

[20] A. Kogtenkov, B. Meyer, and S. Velder, “Alias calculus,
change calculus and frame inference,” Science of Computer
Programming, vol. 97, pp. 163–172, 2015, special Issue on
New Ideas and Emerging Results in Understanding Software.
[Online]. Available: https://www.sciencedirect.com/science/articl
e/pii/S0167642313002906

[21] A. Diwan, K. S. McKinley, and J. E. B. Moss, “Type-based alias
analysis,” ser. PLDI ’98. New York, NY, USA: Association for
Computing Machinery, 1998, p. 106–117. [Online]. Available:
https://doi.org/10.1145/277650.277670

[22] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership types
for flexible alias protection,” in Proceedings of the 13th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’98. New York, NY,
USA: Association for Computing Machinery, 1998, p. 48–64.
[Online]. Available: https://doi.org/10.1145/286936.286947

[23] A. Fass, D. F. Somé, M. Backes, and B. Stock, “Doublex: Statically
detecting vulnerable data flows in browser extensions at scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021, pp. 1789–1804.

[24] “The race to create the world’s next super-app - bbc news,”
https://www.bbc.com/news/business-55929418, (Accessed on

08/28/2022).
[25] T. inc., “Wechat mini-program’s official document (component),”

https://developers.weixin.qq.com/miniprogram/en/dev/component,
2022.

[26] Allison, “Wechat mini-programs 2020: What your brand should
know about this daily-life essential,” https://daxueconsulting.co
m/wechat-mini-programs-2020-report/, 2020.

[27] T. inc., “15. rules for user privacy and data,”
https://developers.weixin.qq.com/miniprogram/en/product/#14-
User-Privacy-and-Data-Specifications, 2022.

[28] ——, “Wechat mini-program’s official document (data verification
and encryption),” https://developers.weixin.qq.com/miniprogram
/en/dev/framework/open-ability/signature.html, 2020.

[29] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++:
dynamic taint analysis with targeted control-flow propagation.” in
NDSS, 2011.

[30] S. Chen, Z. Lin, and Y. Zhang, “SelectiveTaint: Efficient data flow
tracking with static binary rewriting,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 1665–1682. [Online]. Available: https://www.usenix.o
rg/conference/usenixsecurity21/presentation/chen-sanchuan

[31] S. Rahaman and D. Yao, “Program analysis of cryptographic
implementations for security,” in 2017 IEEE Cybersecurity
Development (SecDev). IEEE, 2017, pp. 61–68.

[32] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman,
“Taj: effective taint analysis of web applications,” ACM Sigplan
Notices, vol. 44, no. 6, pp. 87–97, 2009.

[33] W. Huang, Y. Dong, and A. Milanova, “Type-based taint analysis
for java web applications,” in International Conference on
Fundamental Approaches to Software Engineering. Springer,
2014, pp. 140–154.

[34] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propaga-
tion for java,” in 21st Annual Computer Security Applications
Conference (ACSAC’05). IEEE, 2005, pp. 9–pp.

[35] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “{TaintPipe}:
Pipelined symbolic taint analysis,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 65–80.

[36] X. Fu and H. Cai, “Scaling application-level dynamic taint
analysis to enterprise-scale distributed systems,” in ICSE

https://w3c.github.io/miniapp/white-paper/
https://w3c.github.io/miniapp/white-paper/
https://doi.org/10.1145/3449141
https://walkthechat.com/wechat-mini-programs-simple-introduction/
https://walkthechat.com/wechat-mini-programs-simple-introduction/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://pay.weixin.qq.com/index.php/public/wechatpay_en
https://pay.weixin.qq.com/index.php/public/wechatpay_en
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/authorize.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/authorize.html
https://developers.weixin.qq.com/miniprogram/dev/framework/release/
https://developers.weixin.qq.com/miniprogram/dev/framework/release/
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://developers.weixin.qq.com/miniprogram/en/dev/framework/subpackages.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/subpackages.html
https://www.sciencedirect.com/science/article/pii/S0167642313002906
https://www.sciencedirect.com/science/article/pii/S0167642313002906
https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/286936.286947
https://www.bbc.com/news/business-55929418
https://developers.weixin.qq.com/miniprogram/en/dev/component
https://daxueconsulting.com/wechat-mini-programs-2020-report/
https://daxueconsulting.com/wechat-mini-programs-2020-report/
https://developers.weixin.qq.com/miniprogram/en/product/#14-User-Privacy-and-Data-Specifications
https://developers.weixin.qq.com/miniprogram/en/product/#14-User-Privacy-and-Data-Specifications
https://developers.weixin.qq.com/miniprogram/en/product/#14-User-Privacy-and-Data-Specifications
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/signature.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/signature.html
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-sanchuan
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-sanchuan

’20: 42nd International Conference on Software Engineering,
Companion Volume, Seoul, South Korea, 27 June - 19 July, 2020,
G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 270–271.
[Online]. Available: https://doi.org/10.1145/3377812.3390910

[37] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. R.
Murphy-Hill, “Cheetah: just-in-time taint analysis for android
apps,” in Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017 - Companion Volume, S. Uchitel, A. Orso, and
M. P. Robillard, Eds. IEEE Computer Society, 2017, pp. 39–42.
[Online]. Available: https://doi.org/10.1109/ICSE-C.2017.20

[38] J. Zhang, C. Tian, and Z. Duan, “Fastdroid: efficient taint
analysis for android applications,” in Proceedings of the 41st
International Conference on Software Engineering: Companion
Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-
31, 2019, J. M. Atlee, T. Bultan, and J. Whittle, Eds.
IEEE / ACM, 2019, pp. 236–237. [Online]. Available:
https://doi.org/10.1109/ICSE-Companion.2019.00092

[39] Z. Yang and M. Yang, “Leakminer: Detect information leakage on
android with static taint analysis,” in 2012 Third World Congress
on Software Engineering. IEEE, 2012, pp. 101–104.

[40] Z. Zhong, J. Liu, D. Wu, P. Di, Y. Sui, and A. X. Liu, “Field-
based static taint analysis for industrial microservices,” in 44th
IEEE/ACM International Conference on Software Engineering:
Software Engineering in Practice, ICSE (SEIP) 2022, Pittsburgh,
PA, USA, May 22-24, 2022. IEEE, 2022, pp. 149–150. [Online].
Available: https://doi.org/10.1109/ICSE-SEIP55303.2022.9794096

[41] R. Gera, “On the dominator colorings in bipartite graphs,” in Fourth
International Conference on Information Technology (ITNG’07).
IEEE, 2007, pp. 947–952.

[42] Z. Kang, S. Li, and Y. Cao, “Probe the proto: Measuring client-
side prototype pollution vulnerabilities of one million real-world
websites.”

[43] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-
scale detection of dom-based xss,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
2013, pp. 1193–1204.

[44] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding
out domsday: Towards detecting and preventing dom cross-site
scripting,” in 2018 Network and Distributed System Security
Symposium (NDSS), 2018.

[45] M. Madsen, F. Tip, and O. Lhoták, “Static analysis of event-driven
node. js javascript applications,” ACM SIGPLAN Notices, vol. 50,
no. 10, pp. 505–519, 2015.

[46] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip,
“Efficient construction of approximate call graphs for javascript
ide services,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 752–761.

[47] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett,
“{VEX}: Vetting browser extensions for security vulnerabilities,”
in 19th USENIX Security Symposium (USENIX Security 10), 2010.

[48] S. Khodayari and G. Pellegrino, “{JAW}: Studying client-side
{CSRF} with hybrid property graphs and declarative traversals,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 2525–2542.

[49] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq,
“Adgraph: A graph-based approach to ad and tracker blocking,”
in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 763–776.

[50] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen,
Y. Zhang, G. Yang, and M. Yang, “Identity confusion in webview-
based mobile app-in-app ecosystems,” in 31st USENIX Security
Symposium (USENIX Security’22), 2022.

[51] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery:
Root causes, attacks, and vulnerability detection,” in Proceedings
of the 29th ACM Conference on Computer and Communications
Security, 2022.

https://doi.org/10.1145/3377812.3390910
https://doi.org/10.1109/ICSE-C.2017.20
https://doi.org/10.1109/ICSE-Companion.2019.00092
https://doi.org/10.1109/ICSE-Companion.2019.00092
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794096

	Introduction
	Background
	Running Example and Challenges
	Running Example
	Comparison with Web Apps and Mobile Apps
	Objective and Challenges
	Scope

	Design
	UDFG Generation
	Data-Flow Propagation
	Data-Flow Resolution

	Evaluation
	Experiment Setup
	Evaluation Results

	Application
	Discussion
	Related Works
	Conclusion

