
Cross Miniapp Request Forgery: Root Causes, Attacks, and
Vulnerability Detection

Yuqing Yang
The Ohio State University

yang.5656@osu.edu

Yue Zhang
The Ohio State University

zhang.12047@osu.edu

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

ABSTRACT

Aminiapp is a full-fledged app that is executed inside amobile super

app such as WeChat or SnapChat. Being mini by nature, it often

has to communicate with other miniapps to accomplish complicated

tasks. However, unlike a web app that uses network domains (i.e., IP

addresses) to navigate between different web apps, a miniapp uses a

unique global appId assigned by the super app to navigate between
miniapps. Unfortunately, any missing checks of the sender’s appId
in a receiver miniapp can lead to a new type of attacks we name it

cross-miniapp request forgery (CMRF). In addition to demystifying

the root cause of this attack (i.e., the essence of the vulnerability),

this paper also seeks to measure the popularity of this vulnerability

amongminiapps by developing CmrfScanner, which is able to stat-

ically detect the CMRF-vulnerability based on the abstract syntax

tree of miniapp code to determine whether there are any missing

checks of the appIds. We have tested CmrfScanner with 2,571,490

WeChat miniapps and 148,512 Baidu miniapps, and identified

52,394 (2.04%) WeChat miniapps and 494 (0.33%) Baidu miniapps

that involve cross-communication. Among them, CmrfScanner

further identified that 50,281 (95.97%) ofWeChatminiapps, and 493

(99.80%) of Baidu miniapps lack the appID checks of the sender’s
mini-apps, indicating that a large amount of miniapp developers

are not aware of this attack. We also estimated the impact of this

vulnerability and found 55.05% of the lack of validation WeChat

miniapps (7.09% of such Baidu miniapps) can have direct security

consequences such as privileged data access, information leakage,

promotion abuse, and even shopping for free. We hope that our

findings can raise awareness among miniapp developers, and future

miniapps will not be subject to CMRF attacks.

CCS CONCEPTS

• Security and privacy → Web application security; Mobile

and wireless security.

KEYWORDS

Mobile security; mobile super apps; miniapp security; input valida-

tion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560597

ACM Reference Format:

Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request

Forgery: Root Causes, Attacks, and Vulnerability Detection. In Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3548606.3560597

1 INTRODUCTION

Increasingly, mobile super apps from WeChat [34], Baidu [38],

and TikTok [28] to recently Snapchat [4] all have been exploring

new ways to utilize their huge user base and extend their func-

tionalities to make more profit. One such way is through a novel

paradigm called miniapp, debuted byWeChat in 2017 [2], in which

a light-weight and full-fledged app is executed inside a JavaScript

engine created (or virtualized) by the host app [42]. With easy

access and install-less features, along with a myriad of daily-life

services ranging from ride-hailing to online-shopping, the miniapp

paradigm has rapidly gained momentum among users, bringing

a huge amount of opportunities for both super app vendors and

third-party developers. For example, with a massive monthly ac-

tive users of miniapps reaching up to 1.29 billion [5] as in the first

quarter of 2022, and WeChat miniapps alone have accumulated

a total transaction value of 2.72 trillion RMB in 2021 [6].

Compared to traditional web apps or nativemobile apps, miniapps

are featured with easy development and distribution. Specifically,

unlike web apps that typically require developer maintained back-

end servers, miniapps do not require a mandatory back-end from

developers [9], and instead there is a set of well-encapsulated APIs

to allow easy access to super app maintained back-end data (e.g.,

user name, gender, and home address) and system resources (e.g.,

Bluetooth, GPS, and cameras) [32]. In addition to being distributed

through app stores (much like how native mobile apps are dis-

tributed), miniapps can also be distributed by utilizing the super

app user’s social network via chat messages, user’s moment posts,

or even just a QR code, once the miniapp has passed the vetting by

the super app. Using a newminiapp is only one click away [42], and

there is no need to install or uninstall it (i.e., install-less). As such,

the miniapp paradigm has created a triple-win situation: developers

reduce their development cost, the users have convenient access

to a variety of services, and the platform gains popularity, user’s

stickiness, and more profit [34, 42, 45].

On the other hand, similar to traditional web apps or native

apps, miniapps often also need to work together to complete a

sophisticated task. For example, a shopping miniapp may need to

communicate with a payment miniapp with additional information

such as the order ID and price information to finish a purchasing

transaction. Such a cross-communication is particularly important

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yuqing Yang, Yue Zhang, & Zhiqiang Lin

for miniapps to enrich their functionalities, since a single miniapp

usually has fewer functionalities when compared with native apps

due to its size limit (e.g., the size of a WeChat miniapp cannot

exceed 12 MB [8]). Additionally, the miniapps may not only commu-

nicate with their back-ends as in traditional web apps, but also need

a similar cross-miniapp communication in their front-ends as in

native apps, much like the traditional inter-process communication

(IPC). Therefore, the super app has invented such a communication

that resembles the Android Intent mechanism, to allow a miniapp

to redirect to other miniapps. Meanwhile, when a miniapp initiates

a redirection request to another one, it can set specific data to be

transmitted to others by setting a special native-app-intent-alike

JSON object called extraData [19].

However, during the cross-communication (including both the

back-end channel and the front-end channel), given privacy-sensitive

data transmitted and the privileged capabilities the communicating

miniapps (particularly the receiver miniapps) may have, the super

app needs to add strict security policies and mechanisms to protect

the data during the transmission and consumption. As such, super

apps such as WeChat have enforced the mandatory HTTPS pro-

tocol for miniapps to communicate with their back-ends. However,

the enforcement for the front-end secure communication is miss-

ing (e.g., no integrity check of the origin of the sender miniapp).

Meanwhile, we also find that the communication is often miniapp-

specific, and hard to be secured from the super app’s perspective.

For instance, a shopping miniapp needs to be notified when the pay-

ment miniapp has finished processing its payment. However, when

the shopping miniapp receives the feedback from the payment

miniapp, it is the responsibility of the shopping miniapp instead

of the super app to check whether the feedback is indeed from

an expected miniapp. As such, it is the miniapp’s responsibility to

check the message authenticity and integrity.

Therefore, any missing check of the identity (i.e., the appId) of
the sender miniapp at a receiver miniapp (particularly for those

receiver miniapps with privileged capabilities) can allow attackers

to forge fake requests and inject them into the receiver miniapp.

We name such an attack Cross-Miniapp Request Forgery (CMRF),

which can lead to various security breaches. For instance, as we

have demonstrated in this paper, the attacker can achieve “shopping

for free” by injecting a payment success message to trick a shopping

miniapp into believing that the payment has been succeeded; the

attacker can hack into arbitrary webcams to see the video streams;

and the attacker can also login into arbitrary users’ accounts by

injecting a fabricated account identifier for promotion abuse.

To understand the prevalence and impact of CMRF attacks among

miniapps, we have developed CmrfScanner, a static analysis tool

to detect the vulnerabilities among miniapps, by detecting whether

there are any missing checks of the source miniapp’s ID in cross-

miniapp communication based on the abstract syntax tree of the

miniapp code. Our evaluation with 2,571,490 WeChat miniapps

and 148,512 Baidu miniapps revealed a worrying situation: 95.97%

of the cross-communicated WeChat miniapps, and 99.80% of the

cross-communicated Baidu miniapps have failed to perform the se-

curity checks, indicating that a large number of miniapp developers

are not aware of our CMRF attacks. While the attacker can inject

arbitrary messages into the receivers that do not perform appId

Resources
Protection Permissions

(if applicable)
Example APIs

P I V A

Front-end Guarded Resources

Location � scope.userLocation getLocation
Audio � scope.record RecorderManager.start
Bluetooth � scope.Bluetooth getBluetoothDevices
Camera � scope.camera CameraContext.takePhoto
Media � scope.writePhotosAlbum saveImageToPhotosAlbum
WeRun � scope.werun getWeRunData
UserInfo � scope.userinfo getUserProfile
Address � scope.address chooseAddress
Invoice � scope.invoice getInvoice
InvoiceTitle � scope.invoiceTitle getInvoiceTitle
File � N/A FileSystemManager.saveFile
Data Cache � N/A setStorageSync

Back-end Guarded Resources

Payment � N/A requestPayment
AccountInfo � N/A getAccountInfoSync
Coupon � N/A openCard
PhoneNumber � N/A getPhoneNumber
Socket � N/A createTCPSocket
HTTPS � N/A wx.request

Table 1: Summary of resources and their protection mecha-

nism. P: Permission, I: Isolation; V: Vetting, A: Allowlisting.

checks, those receivers may not have permissions to perform privi-

leged actions (e.g., controlling devices or buying products). As such,

we have also estimated the potential impact of the vulnerabilities

based on the use of mission critical APIs in the victim miniapps.

Among these miniapps that do not perform appId checks, our API-

based impact analysis estimates that nearly 55.05%wechat miniapps

and 7.09% baidu miniapps can have direct security consequences.

Contributions. In short, we make the following contributions:

• Novel Attacks (§3 and §7). We are the first to study the security

issues of cross-miniapp communication, and discover the CMRF

attacks, which allow attackers to inject a forged request to a

vulnerable miniapp leading to various security consequences

such as privileged data access, information leakage, or even

shopping for free.

• Efficient Detection (§4). To identify the vulnerable miniapps,

we present CmrfScanner, an open-source, static data flow anal-

ysis based tool to analyze the AST nodes of the miniapps and

detect the uses of the requests to identify those miniapps with-

out the validation checks of the appIDs.

• Empirical Evaluation (§6). With CmrfScanner, we have iden-

tified 50,281 (95.97%) vulnerable miniapps out of 52,394miniapps

from theWeChatmarket, and 493 (99.80%) vulnerable miniapps

out of 494 miniapps that used the cross-miniapp channel from

the Baidu market. Our API-based impact analysis further esti-

mates that 55.05% of these WeChat miniapps and 7.09% Baidu

miniapps can have direct security impact.

2 BACKGROUND

2.1 The Resource Management of Miniapps

By invoking the corresponding APIs provided by the super apps,

a miniapp can access rich resources (e.g., location and Bluetooth).

Since a large body of these resources are privacy sensitive, the host

app as well as the underlying OS must protect the resources prop-

erly. Note that in the rest of this paper, we use the host app to denote

the app that provides the run-time environment to the miniapps,

Cross Miniapp Request Forgery: Root Causes, Attacks, and Vulnerability Detection CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

and the super app to denote the whole app including both the

miniapp and the host app. At a high level, the protection can be clas-

sified into permission-based, isolation-based, allowlist-based, and

vetting-based. As shown in Table 1, based on where the resources

are located, we describe how they are guarded in the following.

• Front-end Guarded Resources. A front-end resource can be

protected by either the permission mechanism from both the

host apps and the underlying OS, or just the isolation mecha-

nism from the OS. To be more specific, the front-end of a super

app can use the permission mechanism to check whether a given

miniapp has the corresponding permissions when accessing a

protected resource. For instance, WeChat provides access for

miniapps to both the OS-level resources (e.g., location, Blue-

tooth) and information collected from the users (e.g., mailing

address) [1]. Meanwhile, the host apps can also use the isolation

mechanism provided by the OS to protect resources. For exam-

ple, the host apps can create an isolated space for each miniapp

to prevent its files (e.g., configuration files) from being accessed

by other unauthorized apps or miniapps.

• Back-end Guarded Resources. The back-end of the super app

also need to protect the resources from being accessed by unau-

thorized apps. To this end, the super-apps will first verify the

authenticity and the corresponding permissions of the develop-

ers, and then grant them the access once they have passed the

checks. For example, API requestPayment [7] is not available to
individual developers but to enterprise developers. To use such

APIs, the enterprise developers need to submit their business

licenses to the super app providers for the vetting, and can only

use those APIs when they obtain the approval. Additionally, the

super apps’ back-end can use allowlist to protect the network

resources [3]. Specifically, the miniapps cannot access arbitrary

web domains, but only a list of domains that are trusted by their

super apps (e.g., websites that do not use HTTPS are not allowed

to be accessed by miniapps). Sometimes, the miniapp developers

can require the super apps to expand the allowlist by providing

the domains that they attempt to access for approval.

2.2 Cross-miniapp Communications

Similar to mobile apps or web apps, the miniapps can also communi-

cate with each other to complete a sophisticated task. Particularly, a

miniapp can send a cross-miniapp request by redirecting to another

miniapp identified by its miniapp ID (e.g, appID in WeChat, and

AppKey in Baidu; note that we will just use appID in the rest of the

paper) assigned by the super apps, which is similar to sending an

Android Intent in Android apps [16] or initiating a URL request in

web apps. In the following, we describe its detailed workflow.

As shown in Figure 1, two miniapps need to go through the three

stages with eight steps to achieve their cross-communication: (𝑖)
request creation and sending, where a sender miniapp first creates

a request and invokes the communication API, (𝑖𝑖) channel estab-
lishment, where the host app receives the request, and creates a

shared-memory-alike channel to save the request for the receiver

miniapp to consume, and (𝑖𝑖𝑖) request receiving, where the receiver
fetches the request from the channel. Next, we explain each step in

greater details (we useWeChat as an example in this section, while

other super apps such as Baidu have similar implementations):

WeChat Main-process Front-end

 navigateToMiniprogram(appID,Req)

Req, appID

 invokeHandler(API,Req)

 addToContainer(Sender)

 saveConfig(Req)

 LaunchReceiver(appID)

 loadConfig(Req)

Req

Front-end

Req

Back-end

 Verify(appID)

Back-end

 callBack

Sender Miniapp Receiver Miniapp

I

II

III

WeChat

Figure 1: Illustration of Cross-MiniApp Communication

(I) Request Creation and Sending.Assume a shoppingminiapp

needs to communicate with a payment miniapp to complete

a payment transaction. After the user presses the purchase

button, the shopping miniapp first needs to get the price

and then generate an order ID, and then invokes the inter-

miniapp communication API (e.g., wx.navigateToMiniPro-
gram) (Step �). For example, as shown in Figure 2, the

communication API has three parameters: (𝑖) the receiver’s
miniapp ID (i.e., appId “wx2d495bf4b2abdecef”), (𝑖𝑖) the
path URL that the sender attempts to send the requests (note

that a receiver can have more than one path URL, each with

different functionalities), and (𝑖𝑖𝑖) the request, typically in

the format of extraData. As shown in Figure 2, the sender

miniapp uses extraData to transfer the price and the order

ID. Specifically, extraData is a JSON object that contains

the name of the request and the value of the request (e.g.,

extraData:{Price:price} in line 8).

(II) Channel Establishment.When the cross communication

API is invoked from a miniapp, it first notifies the host app of

the ongoing communication request (Step �). For example,

when WeChat receives this request, it pushes the sender

into a run-time stack (called AppBrandRuntimeContainer),
which maintains a few miniapps that have been launched

so far (Step �). In particular, when a miniapp in the run-

time stack enters an inactive state with its running resources

unreleased (WeChat does not allow a miniapp to run in

the background), WeChat will release the resources of the

miniapp located at the bottom of the stack if the miniapp

stays inactive for more than 5 minutes. This is because the

host app itself (e.g., WeChat) is still a native app, which has

relatively limited resources when compared with an Oper-

ating System (e.g., Android). It cannot allow a miniapp to

continue to launch (or run) or consume unlimited resources.

As such, creating a shared-memory-alike space for the two

miniapps (which are two independent processes) to commu-

nicate is a viable option. The creation of such a shared mem-

ory is simple, and WeChat just encapsulates the request

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yuqing Yang, Yue Zhang, & Zhiqiang Lin

1 // sender (shopping miniapp) ID: wxd7c977843ebe7a64
2 submitOrder: function(){
3 price = self.getPrice();
4 tt.navigateToMiniProgram({
5 appId: "wx2d495bf4b2abdecef",
6 path: "paymentpage",
7 extraData: {
8 Price: price
9 orderID: orderid,
10 }
11 });
12 }
13 onLaunch(o){
14 var e=this;
15 o.referrerInfo && (e.globalData.paymentState
16 = o.referrerInfo.extraData.paymentState) &&
17 (e.globalData.couponCode
18 = o.referrerInfo.extraData.couponCode)
19 if(e.globalData.paymentState == "Success")
20 {
21 shiptheProducts() //ship the products
22 }
23 saveCouponCode(e.globalData.couponCode)
24 }

Figure 2: Code snippet of a (vulnerable) sender miniapp

1 // receiver (payment miniapp) ID: wx2d495bf4b2abdecef
2 var e=getApp();
3 onLaunch(o){
4 o.referrerInfo && (e.globalData.price
5 = o.referrerInfo.extraData.Price) &&
6 (e.globalData.appId
7 = o.referrerInfo.appId)
8 e.globalData.orderID = o.referrerInfo.extraData.orderID
9 }
10 Pay:function() {
11 var price = e.globalData.Price
12 wx.requestPayment({price, ...}) //pay the order
13 if(e.globalData.appId == "wxd7c977843ebe7a64"){
14 e.globalData.coupon = 'MYCOUPON'
15 }else{
16 e.globalData.coupon = null
17 }
18 }
19 wx.navigateBackMiniProgram({
20 extraData: {
21 paymentState: 'Success',
22 couponCode: e.globalData.coupon
23 }

Figure 3: Code snippet of a (secure) receiver miniapp

into an object called AppBrandInitConfig, then saves this

object for future references (Step�). Subsequently, WeChat

launches the receiver miniapp based on the appId specified

by the sender (Step �).

(III) Request Receiving.When the receiver miniapp is launched,

it first invokes a callback function to fetch the request as

shown in Figure 3. The callback function can be onShow or
onLaunch, which will be executed every time when the UI

launches (Step �). The callback function ultimately retrieves

the saved AppBrandInitConfig, and returns the requests

to the receiver running in the foreground (Step). Since

the sender configures parameters with different names (e.g.,

“Price” and “orderID”), the receiver then uses these names

to fetch the parameters of interest. The receiver can also

check the source of the request by comparing appId with

its expected one to ensure that the request is from an ex-

pected miniapp (Step
, which is highlighted). For example,

as shown on lines 13–17 of Figure 3, the payment miniapp

and the shopping miniapp could have collaborations, e.g.,

the payment miniapp may give some coupons to the user if

the payment request is from the portal of the intended shop-

ping miniapp (e.g., whose appId is “wxd7c977843ebe7a64”).
Note that similar to the sender that can send a request to

the receiver, the receiver can also send a request back to

the sender using the cross-miniapp communication API

wx.navigateBackMiniProgram. In our example, the receiver

notifies the sender of the payment statues and the coupon,

and at this moment the receiver now becomes the sender and

the original sender becomes the receiver. The workflow is

similar to the API navigateToMiniProgram, and therefore

its detail is omitted for brevity.

3 THE CMRF ATTACKS

Having explained the workflow of cross-miniapp communication,

we now present cross-miniapp request forgery (CMRF) attacks,

where an attacker uses a malicious miniapp to inject forged request

into a receiver miniapp that does not enforce security checks. In

particular, we provide details of the CMRF attacks, including the

threat model (§3.1), the vulnerabilities (§3.2), and the workflow of

the attack (§3.3).

3.1 Threat Model and Scope

Assumptions. As illustrated in Figure 1, there are various par-

ties involved in a cross-miniapp communication such as the host

app (e.g., WeChat), the front end of both the receiver and sender

miniapps, and their back-ends if any. To make the attack more

focused, we first assume that there is no tampering with the host

app code. Similarly, we assume the code integrity of the miniapp

front-end, and there is no static modification against them either.

Additionally, we assume that the back-ends of the miniapps are also

trusted, since they are typically out of the reach of attackers (unless

they have vulnerabilities to allow unauthorized access, which is out

of our focus). The communication between front-end and back-end

is also trusted, since this is typically secured via encryption (e.g.,

HTTPS). Finally, we assume that the phone is trusted (no rooting),

but the sender miniapp itself could be untrusted.

The Attacker’s Capabilities. The CMRF attack can succeed for at

least two reasons. First, the attacker does not have to publish the ma-

licious miniapp in the market (no vetting at all) and only use it in the

development environment. Note that currently WeChat does not

differentiate the testing environment and production environment,

miniapp developers can test their miniapps to cross-communicate

with any other miniapps of interest on the market. Fundamentally,

WeChat cannot stop this behavior, as developers must have the

capabilities to test the cross-communication between miniapps

(e.g., testing a shopping miniapp with an officially vetted payment

miniapp). Second, even when attackers submit a malicious miniapp

for the vetting, WeChat still cannot guarantee to scrutinize this

malicious app, as the cross-communication is miniapp-specific and

it is completely up to the miniapp receiver to check the appIds, not
by the vetting.

Scope.Theminiapp paradigm has been supported bymultiple super

apps, including WeChat, TikTok, Baidu, Alipay, and SnapChat.

For proof of concept, we focus on the miniapps crawled from

WeChat and Baidu for two reasons. First, being the pioneer of the

miniapp paradigm, WeChat has more than two million miniapps,

and its user base has reached 1.2 billion [27]. Although Baidu do

not have as many miniapps as WeChat, it also has more than

Cross Miniapp Request Forgery: Root Causes, Attacks, and Vulnerability Detection CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

150,000 miniapps [42], which have more miniapps than many other

vendors (e.g., Snapchat, which has less than 100 miniapps at the

time of this writing). The attacks against those platforms are likely

to have more impacts compared to others. Second, WeChat, and

Baidu have the cross-miniapp channel to allow the two miniapps

to communicate, while many recently launched super apps, such as

Kakao from South Korea and Grab from Singapore [40], currently

do not support this feature. Finally, we would like to note although

we particularly focus on WeChat and Baidu in this paper, there

are other super apps subject to CMRF attacks, as described in §8.

3.2 The Vulnerability, Root Cause, and Impact

Based on our threat model and also on how two miniapps cross-

communicate, we can clearly see that the appId is so fundamental

in cross-miniapp communication, and is used by the two APIs: nav-
igateToMiniProgram and navigateBackMiniProgram to decide

the target of the destination miniapp. It works similarly to IP ad-

dresses in network communication. Since appId is assigned and

managed by the super apps, theoretically, attackers cannot pre-

tend to be either the sender or the receiver. However, while appId
cannot be forged by attackers, developers themselves can make

mistakes, which can put the miniapps (particularly those receivers)

in grave danger: as alluded earlier, it is the developers’ responsibil-

ity to ensure that the request consumed by the receiver miniapp

is from a trusted sender miniapp. Any consumption of the requests

without appId checks could lead to CMRF attacks, where an attacker

can inject a forged request for malicious purposes. For example, as

shown in §2.2, we can notice that the shopping miniapp (Figure 2)

is vulnerable since there is no appId check, whereas the payment

miniapp (Figure 3) is secure since there is the check.

However, similar to buffer overflows in which not all overflow

can lead to control flow hijack attacks, not all lack of appId checks

can have security impact. For example, if the receiver miniapps do

not access any protected resources (as discussed in §2), and only

have unprivileged capabilities (e.g., inspecting the width and the

height of the window and knowing the version of OS), the attackers

do not need to exploit the cross-miniapp-channel at all, as those

unprivileged capabilities are publicly accessible to all the miniapps.

As such, for CMRF vulnerability to be impactful, it also requires

that the victim receiver miniapps to have accesses to the protected

resources (e.g., Bluetooth, payment, or location).

3.3 The Workflow of CMRF Attacks

Whenever a receiver miniapp does not check the appId of the

sender miniapp, this miniapp could be vulnerable to CMRF attacks.

To launch such an attack, the attacker can first statically analyze the

format of the request by reverse engineering the victim miniapps,

then forge a corresponding request with a malicious payload with

the same format, and finally inject the forged request to the victim

to trick it into believing that the request is from a “trusted” sender

and consequently perform any privileged operations. Similarly,

once the request has been successfully injected, the receiver may

also send back sensitive information to the original sender, and thus

the sender can also steal the sensitive information from the victim

receiver. Therefore, as illustrated in Figure 4, there could be at least

LaunchReceiver(appID)

navigateBackMiniprogram(Info)

 navigateToMiniprogram(appID,Req)

Sender Miniapp Receiver Miniapp

 StealInfo(Info)

 Consume(Req)

Figure 4: How to Launch an CMRF Attack.

two types of attack consequences depending on the direction of the

communication: manipulating the data of the victim by injecting

the fake requests (forward direction), or stealing sensitive informa-

tion (e.g., user credentials) from the victim (backward direction).

Next, we explain each type of these attacks in greater detail:

(I) CMRF for Data Manipulation (CMRF-DM). The shopping

miniapp shown in Figure 2 is vulnerable since there is no appId
check. Although in this example, the shoppingminiapp is the sender,

it will work as the receiver and need to receive the payment status

from the intended payment miniapp after the payment has been

made. Therefore, an attacker can create a fake payment miniapp and

navigate back to the victim shoppingminiappwith a paymentState
“Success” message.

To be more specific, we assume that an attacker runs the shop-

ping miniapp on his or her own smartphone. The attacker first

selects a product and presses the purchase button. Then, the shop-

ping miniapp will invoke the payment miniapp and wait for the

payment to be completed. Everything works fine up to this point.

However, instead of finishing the normal payment procedure, the

attacker terminates the payment miniapp and runs a fake payment

miniapp on his or her own development environment, then uses the

fake miniapp to create a forged request (which contains the pay-
mentState “Success”), and sends it to the victim receiver through

navigateToMiniprogram (Step �). This can be easily achieved by

waiting for more than 5 minutes such that the shopping miniapp

will be killed. The attacker can then use navigateToMiniprogram
to invoke the shopping miniapp with the forged request.

On the other hand, the shopping miniapp will always use the call-

back function onLaunch to receive the requests from otherminiapps

regardless of whether or not it is invoked through navigateBack-
Miniprogram or navigateToMiniprogram. As such, the host app
will launch the receiver miniapp (e.g., the shopping miniapp) based

on the appId specified by the attacker (Step �). Since the shopping

miniapp does not check whether the appId is from the the intended

miniapp (such a check should have been placed before line 18 in

Figure 2), the request sent by the malicious miniapp will be pro-

cessed as usual (Step �), and therefore the attacker can achieve

“shopping for free” attacks.

(II) CMRF for Data Stealing (CMRF-DS). This type of attack

is built upon CMRF for the injection of fake requests, where the

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yuqing Yang, Yue Zhang, & Zhiqiang Lin

attacker goes a few steps further by receiving requests sent from

the receiver. This time, the receiver, e.g., the payment miniapp, is

the victim which leaks sensitive data, e.g., the coupon code (line 14

in Figure 3), to the attacker, which should not be leaked because it

is supposed to be distributed to the user who initiated the payment.

While it has checked the appId of the sender miniapp of the re-

quest (starting from line 13), we assume that the checking process

is missing from now on to demonstrate our attack principle.

Specifically, we assume that the attacker has already used steps

�-� via navigateToMiniapp, and now the attacker’s miniapp is

switched offline. Next, since we assume that the receiver does not

check the appId, it will then believe that the sender is legitimate

and will respond to the sender in future communication. In Step

�, the receiver finishes the request and subsequently sends the

response (which contains the coupon) to the sender by navigate-
BackMiniProgram, which will notify the host app, which will fur-

ther launch the original attacker’s miniapp. Finally, the attacker

can use the callback function onShow or onLaunch to steal sensitive
information from the victim receiver (Step
). For instance, in our

example, the attacker obtained the coupon. Additionally, note that
if the malicious miniapp is installed onto the user’s mobile, it will

have severe security consequences (e.g., stealing the location data

to track the users).

4 VULNERABILITY DETECTION

Since the lack of appID check is the root cause of the CMRF vul-

nerability (similar to the lack of bounds check is the root cause

of buffer overflow vulnerability), we have to identify the missing

checks in the miniapp code in order to identify the vulnerability. In

this section, we present CmrfScanner, a JavaScript static analysis

tool that utilizes the abstract syntax tree (AST) reconstructed from

miniapp code to scan for vulnerable miniapps. Again, a miniapp

is subject to our CMRF attacks when (𝑖) it uses the cross-miniapp

channel and (𝑖𝑖) it does not check whether the request is from a

trusted sender (i.e., lack of appID check). Therefore, the key idea

for CmrfScanner is to first detect whether there is the use of the

cross-miniapp request (§4.1), and if so, CmrfScanner then further

detects whether there are missing appID checks (§4.2).

4.1 Detecting Uses of Cross-miniapp Requests

A miniapp vulnerable to CMRF attack must use a cross-miniapp

request. To detect whether a miniapp contains such a request, we

can inspect the framework level APIs and their parameters since

miniapps must use standard APIs to receive the requests (and these

APIs cannot be hidden). More specifically, for WeChat, we know it

will wrap the information from a sender miniapp in an object called

referrerInfo, containing appId and extra data of the sender. All

of the cross-miniapp messages will involve the members of refer-
rerInfo.extraData.*, where the * represents a specific member

of extraData, e.g., paymentStatus. As such, we can first inspect

the object to which a variable or member expression is referring,

and then match the aforementioned string to confirm the use of the

cross-miniapp request. Additionally, from the receiver’s perspec-

tive, it needs to use the startup parameter from different life-cycle

functions (e.g., onLaunch or onShow) to fetch the cross-miniapp

1 //code fragment of a vulnerable miniapp
2 "wxd7c977843ebe7a64"==(
3 e.referrerInfo.appId?e.referrerInfo.appId:"")
4 && checkPayStatus(param).then(function(a){...})
5

6 }
Figure 5: Code snippet of complex ID check

requests, and get the information from the sender miniapp (e.g., the

appId and extraData).

Therefore, a straightforward way to detect whether there is

the use of the cross-miniapp request is to match the string of re-
ferrerInfo.extraData.*. However, it is well-known that vari-

ables can be assigned to other variables and variables can have

aliases. In general, the alias may appear in either the assignments

or function invocations. Specifically, (𝑖) the instance of refer-
rerInfo may be re-assigned to a local variable (e.g., a), and if so,

the developer-defined variables are visited through expressions

such as “a.extraData.*”. (𝑖𝑖) The instance of referrerInfo can
be passed to a function as a parameter (e.g., func(a), where a is an
alias of referrerInfo). As such, we have to design an alias-aware

static-analysis algorithm to detect the use of cross-miniapp requests.

In the following, we describe our algorithm in greater detail.

(I) Identifying the Uses of the Requests Across Assignments.

To identify the uses of the request across direct assignments is sim-

ple: if the value of referrerInfo or referrerInfo.extraData is

assigned to a specific variable, CmrfScanner then records that vari-

able and keeps tracking whether the variable is assigned to other

variables or not. If so, it also records other variables. Also, when de-

tecting that the right-hand side (RHS) of a recorded variable (which

is originally assigned from referrerInfo.extraData, or refer-
rerInfo) is fetched by the miniapp (e.g., a.extraData.payment-
Status, where the variable a is the recorded variable), it concludes

that the request is used. For example, assume “var a = refer-
rerInfo.extraData”, CmrfScanner will record “a” first. Later,
when observing “var b = a”, it will record “b” as well. Finally, the
miniapp fetches the developer-defined variable (e.g., paymentSta-
tus) from b (e.g., b.extraData.paymentStatus), it then identifies

the use of the request across different assignments.

(II) Identifying the Uses of the Requests Across Function

Invocations. To identify the uses of the request across function

invocations is more sophisticated, as it involves the resolution

of data flows across caller, callee and the passed parameters (e.g.,

a.extraData.paymentStatus can be passed as a parameter). Theo-

retically, we can follow the same practice by recording and tracking

the variables and the parameters of functions that are originally re-

assigned from referrerInfo.extraData (or referrerInfo), and
iterating the each statement of the functions to confirm whether or

not the parameters are assigned to other variables, or fetched by the

miniapps. However, this may introduce an inefficiency issue when

the callee is a utility function that is being called multiple times

(which means that we need to traverse the same function node mul-

tiple times). Moreover, such a solution may cause the analyzer to

enter a dead loop if the function call graph contains cycles. This is

because there could be functions calling each other recursively (e.g.,

where a function keeps invoking another function until a specific

condition is satisfied). In dynamic analysis, the analyzer tool can ter-

minate the program when it finds the condition satisfied. However,

Cross Miniapp Request Forgery: Root Causes, Attacks, and Vulnerability Detection CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

LogicExpr

BinaryExpr

Literal == ConditionalExpr

MemberExpr

MemberExpr

Identifier Identifier

Identifier

MemberExpr

MemberExpr

Identifier Identifier

Identifier

Literal

CallExpr

left

left op right

test

object

object property

property

consequent

object

object property

property

alternate

right

"wxd7c977843ebe7a64" ""

"e" "referrerInfo"

"appId"

"e" "referrerInfo"

"appId"

""

Figure 6: The AST Tree of the code snippet of Figure 5, where

the green nodes involve appId and blue nodes indicate in

which the check is performed.

we are performing static analysis, and it is likely that the analysis

may never end (e.g., in dead loops) when the functions call each

other recursively, since the analyzer tool does not know whether

the condition is satisfied. As such, we need to find a solution that

makes the analysis more efficient and solves dead loops.

To improve the efficiency, we propose not to reanalyze an ana-

lyzed function multiple times, but to store a call graph to record the

caller with an index of the parameter of interest (the parameter is

originally assigned from referrerInfo.extraData). In particular,

for each function involving these parameters of interest, we scan

each of the parameters individually and record the analyzed results

for future reference (i.e. whether the miniapp fetches any requests

from these parameters of interest). Such a practice can avoid the

analyzer entering dead loops as well, since for each of the functions

being analyzed, we will not process any functions that do not have

the parameter of interest involved, although the functions call each

other recursively.

4.2 Detecting the Missing Checks

Having identified the use of a cross-miniapp request, we next need

to see whether there are missing checks of appIDs. While the sim-

ple string matching may be able to handle simple comparisons (e.g.,

appId == “wxd7c977843ebe7a64”), it cannot process the compar-

isons that are as complex as shown in Figure 5, in which nested

logical expressions and conditional expressions have separated the

comparison operators and the access to the sender’s appId. Funda-
mentally, if there is an appId check, a receiver miniapp must fetch

the sender miniapp’s appId from the object referrerInfo.appId,
which is set by the WeChat framework, and then compare with a

string, a variable, or an array of appIds, and so on.

Therefore, the miniapp appID checking will always involve logi-

cal or binary expressions such as == and in, where the appId is in-

volved in either side of the expression (e.g., appId and the variable be-
ing checked can even be located on the same side of the expressions

such as “if (["wxd7c977843ebe7a64", "wxd3cd37823e137a53"].
indexOf(referrerInfo.appId) !== -1)”). Particularly, we first
identify binary expressions under these conditions (e.g., If, For,
While, and logical expressions) because all these checks on a given

set of appIds are located in binary expressions. Next, we traverse

both the left and right hand sides of the binary expression, and if ei-

ther side contains a variable that is resolved to reffererInfo.appId
(i.e., the variable originally assigned from reffererInfo.appId),
we identify the sender appId of this conditional branch as checked.

For example, as shown in the AST tree in Figure 6, which is the

tree associatedwith the example in Figure 5 (lines 2 – 4), theMember

Expression that involves appId Identifier (marked green) is in the

right branch of Binary Expression marked blue, whose left branch

is the Literal of the compared appId "wxd7c977843ebe7a64". Fur-
thermore, since we have already collected multiple paths that in-

volve the uses of the requests, we perform the detection on each

of those paths to confirm whether there are missing checks. For

a specific miniapp, as long as we have confirmed one path that

involves the uses of the request without checks, we conclude that

this miniapp is vulnerable to CMRF attacks.

5 IMPLEMENTATION

CMRF Attack Implementation.We have implemented the proof-

of-concept (PoC) attack code by following the developer documen-

tation of the super apps (e.g., Baidu, WeChat) as well as reverse

engineering of the targeted miniapps. At a high level, since the

CMRF attacks are often receiver miniapp-specific, we first need

to reverse engineer the victim miniapps of interest (e.g., those re-

ceivers without the security checks, and have the capabilities to

access sensitive resources) to understand its logic and decide which

specific attack (e.g., CMRF-DS or CMRF-DM) can be launched ac-

cordingly. For example, the shopping miniapp may be subject to

shopping for free attack, where the attackers can inject fake pay-

ment status (the format of the payment status messages can be

identified through reverse engineering). With the knowledge ob-

tained from the reverse engineering of the victim miniapps, we

then created the corresponding fake request and injected the mes-

sage through navigateToMiniProgram (CMRF-DM), or obtained

the transmitted messages from the victim (CMRF-DS).

CmrfScanner Implementation.We have implemented our Cm-

rfScanner, whose source code has been made available at https:

//github.com/OSUSecLab/CMRFScanner. We did not build it from

stractch and instead we built it based on the open source tool Dou-
bleX [22]. Specifically, since our analysis involves domain-specific

knowledge and complex AST parsing rules, we used DoubleX due to
its easy AST traversal APIs and value analysis components. We also

modified DoubleX to enable the parsing of JS files in miniapp and

used domain knowledge for function entry identification, appID
check identification, and use of the cross miniapp request data.

6 EVALUATION

In this section, we present the evaluation result. To crawl the

miniapp for the testing by CmrfScanner, we used our open source

MiniCrawler [48] to download the miniapps from WeChat app-

store. We obtained 2,571,490 WeChat miniapps in total, which

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yuqing Yang, Yue Zhang, & Zhiqiang Lin

WeChat

Category
No Use Checked Vulnerable

app %total # app % # app %

Business 131,078 5.1 81 8.07 923 91.93
E-learning 10,271 0.4 4 5.19 73 94.81
Education 240,077 9.34 184 3.72 4,756 96.28
Entertainment 29,442 1.14 140 33.02 284 66.98
Finance 3,509 0.14 6 6.67 84 93.33
Food 114,675 4.46 332 8.07 3,780 91.93
Games 88,056 3.42 10 2.09 469 97.91
Government 31,432 1.22 33 9.02 333 90.98
Health 27,716 1.08 37 5.44 643 94.56
Job 21,773 0.85 16 7.02 212 92.98
Lifestyle 394,493 15.34 269 4.23 6,092 95.77
Photo 9,039 0.35 3 4.41 65 95.59
Shopping 989,498 38.48 743 2.56 28,304 97.44
Social 20,671 0.8 6 2.99 195 97.01
Sports 15,980 0.62 69 22.48 238 77.52
Tool 261,467 10.17 122 3.72 3,161 96.28
Traffic 35,412 1.38 53 9.28 518 90.72
Travelling 10,524 0.41 5 3.62 133 96.38
Uncategorized 83,983 3.27 0 0.0 18 100.0

Total 2,519,096 97.96 2,113 4.03 50,281 95.97

Baidu

Automobile 356 0.24 0 0.0 2 100.0
Business 5,201 3.5 0 0.0 113 100.0
Charity 2 0.0 0 0 0 0
E-commerce 96 0.06 0 0 0 0
Education 1,378 0.93 0 0.0 3 100.0
Efficiency 10,852 7.31 0 0.0 1 100.0
Entertainment 195 0.13 1 11.11 8 88.89
Finance 45 0.03 0 0.0 2 100.0
Food 123 0.08 0 0 0 0
Government 282 0.19 0 0.0 5 100.0
Health 2 0.0 0 0 0 0
Information 1,736 1.17 0 0.0 6 100.0
IT tech 113 0.08 0 0 0 0
Lifestyle 1,818 1.22 0 0 0 0
Medical 97 0.07 0 0 0 0
News 4 0.0 0 0 0 0
Post service 163 0.11 0 0 0 0
Real estate 1,510 1.02 0 0 0 0
Shopping 116,093 78.17 0 0.0 327 100.0
Social 205 0.14 0 0 0 0
Sports 145 0.1 0 0 0 0
Tool 46 0.03 0 0 0 0
Traffic 226 0.15 0 0.0 1 100.0
Travelling 1,473 0.99 0 0 0 0
Uncategorized 5,857 3.94 0 0.0 25 100.0

Total 148,018 99.67 1 0.2 493 99.8

Table 2: The statistics of miniapps w.r.t app categories

consume 6.29 TB disk storage. We also extended MiniCralwer to al-

low it to downloadminiapps fromBaidumarket, withwhichwe also

collected 148,512 Baidu miniapps (consuming 81 GB disk storage).

CmrfScanner was tested with these data sets using three desktop

PCs running Ubuntu 18.04 with i7-7700 CPU and 16 GB memory

each. In this section, we first present the effectiveness of CmrfScan-

ner with these miniapps (§6.1), and then report its efficiency (§6.2).

6.1 Effectiveness

To understand how popular a miniapp is subject to CMRF attacks,

we tested CmrfScanner with our crawled data set. The detailed

detection results are reported in Table 2. In total, there are 2,519,096

(97.96%) WeChat miniapps and 148,018 (99.67%) Baidu miniapps

that never involve cross-communication and therefore are not

vulnerable to CMRF attacks at all. However, surprisingly, for the

WeChat miniapps that use cross-communication, 50,281 (95.97%)

of them fail to perform the checking of the source miniapp’s ap-
pId. Similarly, among all 494 Baidu miniapps that use the cross-

communication, there are 493 (99.80%)miniapps that do not perform

the check. This indicates that regardless of the providers, miniapps

that fail to validate the appID are ubiquitous, and the vast ma-

jority of developers are never aware of our CMRF attacks. Also,

interestingly, we find that some developers who have added the

checks still leave some execution paths unprotected, which still

make their miniapps vulnerable albeit some checks had already

been performed: 620 and 4 miniapps from WeChat and Baidu, re-

spectively, fall into this category. In the following, we first quantify

the correctness of CmrfScanner by inspecting its false positives

and false negatives (§6.1.1), and then dive into deeper the detected

vulnerable miniapps (§6.1.2).

6.1.1 False Positive and False Negative Analysis. Although

DoubleX proved to be a powerful tool in inferring the value of vari-

ables, and domain-specific efforts have been made in CmrfScanner

to improve the accuracy, there are certain conditions under which

false positives or false negatives may occur. We note that failure

to identify appID-check (e.g., caused by aliasing) will make our

CmrfScanner mistakenly identify miniapps that checked appID

as vulnerable, causing false positives. Similarly, failure to detect

the use of cross-miniapp message will make CmrfScanner fail to

identify vulnerabilities, causing false negatives, since the use of the

check means not vulnerable.

Given that there is no ground truth, to verify whether there are

any false positives and false negatives of our result, we sampled 100

miniapps from the miniapps identified as vulnerable and checked

to verify the false positives, and sampled 100 miniapps from the

miniapps identified as not involving extra data to verify false nega-

tives. We plan to release a set of the vulnerable miniapps including

these manually labeled 200miniapps to support open science, which

can serve as the ground truth for any follow-up research.

False Positives (FPs). We found no FPs among these detected 100

vulnerable miniapps, and each of them is indeed vulnerable accord-

ing to our manual inspection of the miniapp code. Interestingly, dur-

ing our inspection, we found that many miniapps were developed

from certain templates, where the vulnerability in templates re-

sulted in their vulnerabilities. For instance, we identified that there

are multiple mini-apps sharing the same folder structure and the

same sequences of code (which can be used to fingerprint the type of

templates). In the end, we found 68 miniapps generated by three dif-

ferent templates that are vulnerable among 100 sampled miniapps,

which consists of 68% sampled miniapps. This shows that code gen-

erated from the template is a serious problem in miniapp security.

False Negatives (FNs). Among the 100 miniapps that are not

identified vulnerable, we found 2 false negatives, making the FN rate

to 2%. Both of these false negatives occur because DoubleX failed

to infer the object referrered to by a member expression. As the

value analysis pointing to extraData returns None, CmrfScanner
will not find a variable matching extraData, this marking it as not

using cross-miniapp channel. Thus, a false negative occurs because

the miniapp actually uses the cross-miniapp channel and there is

the lack of appId check.

6.1.2 Insights of the Vulnerable Miniapps. Next, we seek to

draw a few insights from these large volumes of identified vulnera-

ble miniapps, such as whether there are any correlations between

the vulnerabilities with (𝑖) the app category and (𝑖𝑖) the app ratings,

and (𝑖𝑖𝑖) the potential accessed resources and the categorizations of

Cross Miniapp Request Forgery: Root Causes, Attacks, and Vulnerability Detection CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

the attacks, and (𝑖𝑣) how they cross communicate (e.g., navigateTo
or navigateBack).

(I) Distribution between Vulnerable Miniapps and Their Cat-

egories. Since the miniapp categories reflect the types of services a

miniapp provides, they could partially reflect the potential attacks

to which a miniapp may be vulnerable. This result is reported in

Table 2. We can see that among the 19 WeChat categories and 20

Baidu categories, the top-hit categories with vulnerable miniapps

are shopping, lifestyle, and tool (regardless of their host apps).

Intuitively, the shopping miniapps often provide e-commerce

services, where products are ordered, purchased, and delivered. It

is not a surprise to see that the shopping miniapps often have to

communicate with other miniapps. The lifestyle miniapps, however,

mainly provide convenient services for daily lives ranging from

hair salon to SPA and massage. Similar to shopping miniapps, these

lifestyle miniapps also are highly possible to involve online pur-

chases and membership management. As such, the impact of the

CMRF attack against these miniapps could be concerning, as the

attackers may be able to forge orders or membership information

to perform an impersonation attack or bypass the payment to get

products or services for free.

(II) Distribution between Vulnerable Miniapps and Their Rat-

ings. On top of the miniapp categories, we also classify miniapps

with respect to their popularity. For WeChat miniapps, unlike

Baidu miniapps which have number of clicks in the metadata, they

do not contain such information, and instead we can only use other

data to approximate this. In particular, we can use their ratings

directly from the metadata [48] to approximate the popularity of

the apps, since WeChat miniapp ratings are only available to the

public when a sufficient number of users have rated them. The

ratings could be an important dimension in understanding the

miniapp ecosystem, since they reflect not only the popularity of

the miniapps, as the rating of less popular miniapps will not be

shown to the public (there is no number of clicks for each miniapp

in WeChat available metadata), but also the quality of the services

a miniapp provides. For Baidu miniapps, we collected the number

of clicks (which can be extracted from the metadata) to reflect its

popularity, as a click likely indicates an install. Also, note that there

is no rating available in Baidu miniapps.

As shown in Table 3, we found that the ratings for many of the

WeChat miniapps are not shown, which means that they are less

popular to have enough users to rate them. However, among the

rated miniapps, we found that miniapps with higher ratings are less

likely to have more vulnerability. For example, among the rated

vulnerable miniapps, the ratio of the popular vulnerable miniapps

(e.g., 95.73%) is slightly less than that of non-popular vulnerable apps

(100%). Interestingly, we observed slightly different results from the

Baidu miniapps in that the majority of vulnerable miniapps have a

total click count from 1k to 100k (79.72%), which is in the middle of

the total popularity span. However, given that these miniapps have

a large amount of users, the impacts of our CMRF attacks can still

be catastrophic.

(III) Distribution betweenVulnerableMiniapps andResource

Access. Although theoretically attackers can inject any forged re-

quest into receivers that do not perform the appID checks, the inject

WeChat

Popularity
No Use Checked Vulnerable

app %total # app % # app %

5.0 4,831 0.19 9 4.27 202 95.73
[4.5,5.0) 48,486 1.89 82 5.04 1,545 94.96
[4.0,4.5) 23,794 0.93 18 2.93 597 97.07
[3.5,4.0) 12,222 0.48 3 2.03 145 97.97
[3.0,3.5) 8,342 0.32 2 2.25 87 97.75
[2.5,3.0) 4,375 0.17 2 6.67 28 93.33
[2.0,2.5) 2,014 0.08 0 0.0 3 100.0
[1.5,2.0) 693 0.03 0 0.0 2 100.0
[1.0,1.5) 166 0.01 0 0 0 0
Not Scored 2,414,173 93.88 1,997 4.02 47,672 95.98

Total 2,519,096 97.96 2,113 4.03 50,281 95.97

Baidu

[10M,100M) 7 0.0 0 0.0 1 100.0
[1M,10M) 93 0.06 0 0.0 1 100.0
[100K,1M) 2,456 1.65 0 0.0 29 100.0
[10K,100K) 45,495 30.63 1 0.5 200 99.5
[1K,10K) 62,151 41.85 0 0.0 193 100.0
[100,1K) 25,868 17.42 0 0.0 46 100.0
[10,100) 8,196 5.52 0 0.0 10 100.0
[1,10) 3,752 2.53 0 0.0 13 100.0

Total 148,018 99.67 1 0.2 493 99.8

Table 3: The statistics of miniapps w.r.t. their popularity. The

popularity is measured by the ratings for WeChat miniapps,

and number of clicks for Baidu’s.

request may not have any security impacts, particularly when the

receiver miniapps themselves do not have privileged capabilities to

access sensitive resources. Therefore, it is also necessary to quantify

the security impact of the lack of appID checks. While there are

many ways to do so, a lightweight approach is to use the accessed

resources as a proxy (by scanning the mission-critical APIs and

permissions that used by those vulnerable miniapps) to estimate

the impacts of the attacks. Note that the permission list and the

resource of attacker’s interest can be found in Table 1, and the per-

missions and APIs (e.g., getLocation) can be recognized through

scanning the configuration file (similar to Android) or the code of

the miniapps (the uses of privileged APIs).

To this end, we scanned the vulnerable miniapps again, to iden-

tify the mission critical APIs and permissions to quantify the po-

tential security impact of CMRF attacks. As reported in Table 4,

based on the categories of attacks those miniapps are subject to, we

can notice in total that there are 28,326 WeChat miniapps and 22

Baidu miniapps that are subject to CMRF-DM, and 1,541 WeChat

miniapps and 20 Baidu miniapps that are subject to CMRF-DS,

respectrively. In addition, we also found that over 28,843 (55.05%)

WeChatminiapps involved at least one type of protected resources,

and many of them involve some type of resources that are specif-

ically sensitive, such as user location and payment. Meanwhile, we

noticed that the distributions of the miniapps involving mission crit-

ical APIs of Baidu is different from that of WeChat (similarly, the

distributions of the use of cross-miniapp channel of Baidu, 0.33%,

and WeChat, 2.04%, are also different). There are 19 (3.85%) and

15 (3.04%) miniapps involving network and payment, respectively.

As such, we believe that this problem is currently widely spread

across mission critical miniapps with high privileged capabilities.

(IV) The Cross-Communication Statistics in the Vulnerable

Miniapps.While we do not need to identify the sender miniapp

when determining the vulnerabilities at the receiver side (since we

only need to analyze the code of the receiver miniapp to confirm

the vulnerability), we still would like to explore the relationship be-

tween senders and receivers, e.g., whichminiapp redirects to or back

to a vulnerable miniapp. As such, we first recover the redirection

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yuqing Yang, Yue Zhang, & Zhiqiang Lin

Attack Resources
WeChat Baidu
% # %

CMRF-DM

bluetooth 98 0.19 0 0.00
card 13,139 25.08 0 0.00
location 9,029 17.23 2 0.40
media 2,898 5.53 2 0.40
socket 3,614 6.90 5 1.01
tcp 15,890 30.33 19 3.85
sports 0 0.00 0 0.00

CMRF-DS

address 195 0.37 1 0.20
bluetooth 193 0.37 0 0.00
camera 31 0.06 0 0.00
datacache 1506 2.87 20 4.05
file 274 0.52 3 0.61
https 1,539 2.94 20 4.05
invoice 13 0.02 1 0.20
location 593 1.13 10 2.02
media 1,154 2.20 6 1.21
payment 1381 2.64 15 3.04
socket 325 0.62 3 0.61
userinfo 1,364 2.60 10 2.02
sports 8 0.02 0 0.00

Cross-communication/Total 52,394 2.04 494 0.33

Privileged/Vulnerable 28,843 55.05 35 7.09

Table 4: Distribution between vulnerable miniapps and ac-

cessed resources

Navigate to Navigate back
Categories

vuln # edges % # vuln # edges %

Business 23 41 5.56 97 97 1.31
E-learning 4 4 0.97 1 1 0.13
Education 48 232 11.59 227 227 7.43
Entertainment 9 42 2.17 11 11 1.35
Finance 3 10 0.72 6 6 0.32
Food 4 5 0.97 480 480 0.16
Games 12 54 2.9 8 8 1.73
Government 20 56 4.83 45 48 1.79
Health 25 42 6.04 52 52 1.35
Job 6 52 1.45 15 15 1.67
Lifestyle 58 1,274 14.01 340 340 40.81
Photo 2 19 0.48 8 8 0.61
Shopping 65 195 15.7 946 947 6.25
Social 6 13 1.45 11 11 0.42
Sports 1 1 0.24 10 10 0.03
Tool 98 326 23.67 174 177 10.44
Traffic 14 25 3.38 68 69 0.8
Travelling 3 7 0.72 7 7 0.22
Uncategorized 0 0 0.0 0 0 0.0

Total 401 2,398 96.86 2,506 2,514 80.27

Categories

5.0 4 5 0.97 4 5 0.16
[4.5,5.0) 92 325 22.22 92 325 10.41
[4.0,4.5) 51 203 12.32 51 203 6.5
[3.5,4.0) 12 51 2.9 12 51 1.63
[3.0,3.5) 6 30 1.45 6 30 0.96
[2.5,3.0) 2 3 0.48 2 3 0.1
[2.0,2.5) 0 0 0.0 0 0 0.0
[1.5,2.0) 0 0 0.0 0 0 0.0
[1.0,1.5) 0 0 0.0 0 0 0.0
Not Scored 234 1,781 56.52 234 1,781 57.05

Total 401 2,398 96.86 2,506 2,514 80.27

Table 5: Statistics of vulnerable WeChat miniapps with re-

solved appIds and their communication directions and data.

target specified with the appId in the navigateToMiniProgram,
and then generate a redirection graphwhere the nodes are miniapps

(indexed by appIds) and edges are pointed from the sender to the

receiver miniapp. To this end, we parse the AST tree and collect

the appId property to obtain the appId values. Although there are

many cases in which the appId is dynamically set in WeChat,

we were still able to obtain 2, 907 appIds (and they are just con-

stant strings), and eventually connect them with 4, 912 edges. We

were not able to obtain many concrete values of the appIDs for
Baidu miniapps since most of them are dynamically distributed

from servers.

In particular, as shown in Table 5, we categorize the involved

vulnerable WeChat miniapps based on how a sender initiates the

cross-miniapp communication and how a receiver processes it.

Please note that Baidu miniapps are not included, since we only

identify a few miniapps that have hard coded the receivers’ appIds
in the navigateToMiniProgram. While such practice will not affect

the vulnerability detection, our tool cannot resolve the relationship

between the sender and the receiver (only dynamic analysis can

resolve this).

As reported in Table 5, we found that although the vulnerable

miniapps involving ‘navigationTo’ is much less than that of ‘navi-
gationBack’ (401 vs. 2, 506), the involved redirection edges is close

to that of ‘navigationBack’ (2, 398 versus 2, 514). This indicates
that there are extremely popular vulnerable miniapps to which

are being redirected by hundreds of miniapps, which consequently

generates hundreds of edges involving a single vulnerable miniapp.

6.2 Efficiency

Finally, we quantify the execution time of CmrfScanner. Since

its analysis involved data flow analysis, which is time consuming,

we first filtered out those miniapps that do not involve any cross-

app communication (i.e., navigateToMiniProgram and navigate-
BackMiniProgram) by inspecting the used APIs, resulting in 52,394

WeChat miniapps and 494 Baidu miniapps from the 2,571,490

Tencent miniapps and 148,512 Baidu miniapps, respectively. Then,

CmrfScanner performed the analysis with these miniapps based

on the usage of extraData. The evaluation was carried out on a

desktop with 24 threads in parallel, and it took 9 days to finish

analyzing all the WeChat miniapps and less than 12 hours to finish

analyzing all the Baidu miniapps, where the average cost of time

to analyze a single miniapp is 48.61 and 43.45 seconds for Tencent

and Baidu miniapps, respectively.

7 SECURITY CASE STUDIES

In this section, we perform a few case studies to understand the

impacts of our CRMF attacks. At a high level, the attacks will be

application specific depending on how the exchanged data is used.

Although our analysis can narrow down the miniapps that access

the sensitive resources down to 28,878 (28,843 wechat miniapps,

and 35 Baidu miniapps), we still have to inspect the semantics of

these data of the vulnerable miniapps to design the corresponding

concrete attacks. While this is generally a challenging task, we

can leverage the variable names in the miniapp code to reflect the

semantic meaning, since miniapp is developed using JavaScript

and the variables can be easily parsed. To this end, we developed a

simple plugin to walk through the AST again, to collect the vari-

able names related to the cross-miniapp messages (particularly

extraData) received by vulnerable miniapps. Note that although

the miniapps are usually heavily obfuscated, the variable names of

the request will not be obfuscated as the receiver will need to fetch

the messages based on the variable names.

In total, we identified 2, 412 meaningful variable names, and

these variable names are examined by three experienced security

researchers to see whether there are any security concerns. In the

end, as shown in Table 6, we categorized the identified variables

with respect to their semantic meanings and present the top-5 hit

Cross Miniapp Request Forgery: Root Causes, Attacks, and Vulnerability Detection CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Category Variable Vulnerable w/o Vulnerable w/ Total
Name Check Incomplete Check

Payment Info

for_pay_back 355 0 355
payStatus 313 2 315
pay 178 9 187
isPay 118 0 118
isLecturePay 115 0 115

Order Info

orderId 132 11 143
orderInfo 80 0 80
order_id 42 0 42
jtOrderId 36 3 39
hpj_jsapi_order_id 21 0 21

Phone Number

mobile 6,627 7 6,634
phone 53 0 53
userPhone 8 0 8
phoneNumber 6 1 7
partnerMobile 2 0 2

Promotion Info

cardId 25 0 25
user_coupon_id 2 0 2
couponCode 1 0 1
coupon_id 1 0 1
coupon_no 1 0 1

Device Info

deviceID 2 0 2
uuid 2 0 2
deviceId 1 0 1
devicenum 1 0 1
UUID 1 0 1

Table 6: Top-five cross-miniapp variable names that may

involve security concerns with respect to affected types of

resources.

variable names in the corresponding category that can involve se-

vere consequences if the cross-communicated message is forged.

As shown in the table, these involved variables can be classified

into the following five categories according to the names:

• Payment Info: Payment Info includes payment scene, type,

and the result of payment, which could be fetched or injected

by attackers to shop for free.

• Device Info: Device info includes the information obtained

from the (IoT) devices, such as the deviceID, devicenum, or
room_id. If the device info is forged, the attacker can launch

similar impersonation attacks.

• Promotion Info: Promotion Info usually includes users’ mem-

bership cards, member coupons and promotions that can be ex-

ploited by attackers to abuse the promotion provided by shops.

• Order Info: Order Info includes order IDs and information that

could be modified by attackers including prices and product

amounts.

• Phone Number: Phone Number is crucial to users in miniapp

paradigm in that most miniapps utilize this as identifier and

even account for users to log in. If utilized by attackers, attacker

may hijack arbitrary account for any illicit purposes.

In this section, due to page limit, we just demonstrate concretely

how to launch shopping for free (§7.1), device manipulation (§7.2),

and promotion abuse attacks (§7.3).

7.1 Shopping for Free Attacks

As discussed, many shopping miniapps may not develop their

own payment mechanism but instead use the third-party payment

miniapps. However, if a shoppingminiapp does not check the source

of the information about the payment status sent in extraData,
the attacker may send a success status to a certain order and shop

it for free. As shown in Figure 7, the miniapp Xixiu Group Pur-

chase Backend retrieves the payment status information at line 4,

1 //app.js
2 get_pay_info: function(e) {
3 var t = this;
4 if (... e.referrerInfo.extraData.for_pay_back && this.waitForPayBack) {
5 this.waitForPayBack = !1, wx._hideLoading();
6 var r = e.referrerInfo.extraData;
7 "2" == r.pay_status && (this.broadcastUpdate(), "function" == typeof

this.payBackSuccess && this.payBackSuccess()),↩→

8 "3" != r.pay_status && "4" != r.pay_status || wx._showAlert({
9 content: "payment failed",
10 success: function() {
11 "function" == typeof t.payBackFail && t.payBackFail();
12 }
13 });
14 }
15 },

Figure 7: Vulnerable Code (Xixiu Group Purchase Backend)

that is Subject to Shopping for Free Attacks.

which first checks whether the for_pay_back and waitForPay-
Back flag is true to ensure that the current miniapp has a pending

payment and receives a cross-miniapp request for payment result

information. Then, the miniapp assigns the extraData to r (line

7), and checks if pay_status is 2 (which indicates the payment is

successfully processed). However, as the miniapp does not check

the appID of the source miniapp, an attacker can launch this vul-

nerable miniapp, make an order, hang the redirected payment and

inject a message with pay_status set to 2 with the attacker’s own

malicious miniapp. As the miniapp will treat the order as a success,

the attacker can buy products for free. We have verified this attack

in our controlled environment, and it succeeded.

7.2 Devices Manipulation Attacks

We noticed that many IoT miniapps are using the exchanged de-
viceID to identify a device. However, the miniapps should vali-

date the device ID sent in cross-miniapp channel is from trusted

users to avoid privacy concern and financial losses. However, as

shown in Figure 8, a miniapp named Suyuan Webcam from Suyuan

Surveillance, a company that produces surveillance cameras, first

retrieves deviceID from extraData (and sets globalData to the

corresponding deviceID to preserve the device ID) in a conditional

expression. If the device ID is NULL, it goes into the alternative

branch at the end of line 3, where the miniapp shows a dialog saying

“live device not found”. If the device ID is set, in loadLive at line 14,
it sends a request to the backend to fetch the video streaming URL

of the device ID and opens a webview to watch the live video of the

camera. However, as the source appID is not verified, an attacker

can easily use his/her own miniapp and inject or even enumerate

device ID to see the streaming of the camera.

7.3 Promotion Abuse Attacks

In miniapp paradigm, the mobile phone number is very impor-

tant, since it is usually used to uniquely index a user’s account

in miniapps. For instance, in a Baidu miniapp named Aurora Vi-

sion as shown in Figure 9, the miniapp first parses the value of

extraData.coupon to e and then creates an object containing the

merchant ID, user ID, and the coupon parameters after parsing the

coupon content as URI. However, since the attacker can manipulate

the data by sending crafted coupon info via his/her own miniapp,

the attacker can collect the benefit of the targeted offer distributed

in the form of coupon. Interestingly, we also noticed that many of

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yuqing Yang, Yue Zhang, & Zhiqiang Lin

1 // app.js
2 onLaunch: function(t) {
3 console.log(t), a.String.isBlank(t) ||

a.String.isBlank(t.referrerInfo.extraData.deviceId) ?
this.globalData.data.deviceId = null : this.globalData.data =
t.referrerInfo.extraData, wx.showModal({

↩→

↩→

↩→

4 title: "Hint",
5 content: "Live device not found", ...
6 }});},
7 // index/index.js
8 loadLive: function() {
9 wx.request({
10 url: "https://***.com/device/getVideoUrlByDeviceId",
11 data: {
12 deviceId: e.globalData.data.deviceId
13 },
14 method: "get",
15 success: function(o) {...}})}

Figure 8: Vulnerable Code (Suyuan Webcam) that is subject

Webcam Manipulation Attacks

1 onShow: function(t) {
2 if (t.referrerInfo && "{}" !== s()(t.referrerInfo) && "{}" !==

s()(t.referrerInfo.extraData) && t.referrerInfo.extraData.coupon) {↩→

3 var e = t.referrerInfo.extraData.coupon,
4 n = this.getUserInfoFromCacheSync() || "";
5 Object(l.k)({
6 merchantId: this.globalData.merchantId,
7 couponParams: encodeURI(e),
8 userId: n.sid || "",
9 vs: "V3"
10 }).then((function(t) {
11 console.log("Coupon res", t)
12 })).catch((function(t) {
13 console.log("Coupon err", t)
14 }))
15 }
16 }

Figure 9: Vulnerable Code (Aurora Vision) from Baidu, which

is Subject to Promotion Abuse Attacks (involves payment)

those vulnerable miniapps used the exact the same code to receive

user phone numbers, and those miniapps are likely to be produced

by the same template.We further discovered that some of these apps

were generated from online miniapp template generation services

(e.g., Youzan, Yudian, and Qingzhou). These miniapps generators

work in the “What You See Is What You Get” fashion, which allows

miniapp developers to easily customize their miniapps bymodifying

specific text or figures without any additional programming efforts.

Since these generators have the default packed resources and code,

a developer could use them directly without any modifications. As

such, if one of these miniapps is found to be subject to our attacks,

all miniapps generated by this template will be similarly vulnerable.

8 DISCUSSION

Generality and Practicality of CMRF Attacks. While we have

only evaluated CMRF on two platforms, i.e.,WeChat and Baidu, we

believe our findings are general and CMRF attacks are practical in

many super apps. First, as shown in Table 7, we notice that similar to

WeChat and Baidu, there are a lot of super apps that have provided

the cross-app communication channel, and their implementations

are quite similar: only Baidu has a different name for their cross-

miniapp API. In fact, most of the APIs offered by the super apps have

the same or similar names (e.g., navigateToSmartMiniProgram in

Baidu and navigateToMiniProgram in other platforms). Second,

our CMRF attacks require the receiver miniapps to access sensitive

resources in order to have security impact. We notice that the

sensitive resources provided by different platforms are similar and

that they all used similar mechanisms to protect those resources

(although some resources are not provided on some platforms),

albeit the fact that some platforms provide more resources for

miniapp, such as WeChat. For example, all the platforms have

accesses to the users’ locations, and those locations are guarded

by the permission mechanism. Third, the most effective way of

defending against the CMRF attack is to validate the appID and

enforce the security check before the receiver consumes the request.

However, not all developers will perform the checks, given their

varied backgrounds and skill sets, leading to their miniapps subject

to CMRF attacks. Finally, as discussed in §3.1, our attacks do not

require the malware to be released on the market, and the attackers

do not need to bypass the vetting enforced by the platforms, which

has also increased the practicality of the attacks.

Limitations and Future Work. Our study is not perfect. First,

during our evaluation, we attempt to recover the miniapp cross-

communication map. However, not of all the appIds can be recov-

ered and therefore we cannot resolve all the pairs of navigate-
ToMiniProgram and navigateBackMiniProgram. For example, we

noticed that only a few Baidu miniapps whose appIDs can be re-

solved. To really resolve the values of appIds, we may have to

develop a value set analysis to dynamically compute them.

Second, we only studied CMRF against the cross-miniapp chan-

nel in this paper, and we believe that CMRF attacks only scratch

the tip of iceberg. There could be multiple other attacks that ex-

ploit the cross-miniapp-channel. For example, from the attacker’s

perspective, similar to the native apps, we envision there may be

collusion attacks through navigateToMiniProgram or navigate-
BackMiniProgram. More specifically, since a mini-app needs per-

mission to access sensitive information (e.g., location information,

gender, places of residence, and phone numbers), a malicious mini-

app with the access to sensitive resources can potentially leak the

obtained sensitive data to other mini-apps without the required

permission via the cross mini-app communication.

Finally, we only detect the vulnerability, and we believe that

super app vendors can also offer some mitigation mechanisms (e.g.,

by encrypting the channel so that attackers cannot perform the

forgery). We leave the investigation of such mitigation in future

work.

Ethics and Responsible Disclosure.We have followed commu-

nity practices to avoid potential harms to developers or users: we

only carried out the proof of concept attacks on our own accounts,

devices, and miniapps. Also, in our case studies, instead of directly

injecting payloads to or collecting sensitive data from the miniapps

of other developers, we only inspect their logic to confirm vulner-

abilities. Meanwhile, we have reported all our findings including

the list of the vulnerable miniapps to Tencent in October 2021, and

Baidu in April 2022. Tencent and Baidu both have acknowledged

and confirmed our attacks, and notified us that they will also keep

the third party developers posted, since the CMRF attacks have to

be patched by the third-party developers. Additionally, Tencent has

showed great interests of our CmrfScanner, and asked us for more

technical details (e.g., algorithms and implementations), which have

been presented in this paper.

Cross Miniapp Request Forgery: Root Causes, Attacks, and Vulnerability Detection CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Super App Vendors AppID Sending Request APIs
Lo
ca
ti
on

A
ud
io

Bl
ue
to
ot
h

C
am
er
a

M
ul
ti
-M
ed
ia

Sp
or
t

U
se
rI
nf
o

A
dd
re
ss

In
vo
ic
e

Fi
le

D
at
a
C
ac
he

Pa
ym

en
t

A
cc
ou
nt
In
fo

C
ou
po
n

Ph
on
eN
um

be
r

N
et
w
or
k

QQ Tencent appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � � � � � � �

WeChat Tencent appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � � � � � � �

WeCom Tencent appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � � � � � � �

Baidu Baidu AppKey navigateToSmartProgram, navigateBackSmartProgram � � � � � � � � � � � �

Taobao Alibaba appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � � � �

Alipay Alibaba appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � � � �

Tiktok Bytedance appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � �

JINRI Toutiao Bytedance appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � �

Watermelon Video Bytedance appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � �

Pipixia Bytedance appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � �

Toutiao Lite Bytedance appId navigateToMiniProgram, navigateBackMiniProgram � � � � � � � � � � �

Table 7: Comparison of API implementations and resource accessed across different super apps.

9 RELATEDWORK

Studies on Miniapp and Its Security. Since the mini-app is a

novel paradigm, only few works have been made torwards this

direction and most of them focus on understanding its architecture

and applications. For example, Hao et al. [26] studied the system

architecture and key technologies used by the WeChat miniapps.

Regarding the applications, miniapps can be used on healthcare [43,

49], transportation [14], online shopping [36], education [13, 31,

41]. Today, there are millions of miniapps, and most of them are

obfuscated, as reported by MiniCralwer [48].

Several attacks have also been discovered against the miniapps.

For example, Lu et al. [32] studied the resource management vulner-

abilities of mini-apps, and designed a few attacks to allow malicious

mini-apps to collect the sensitive data provided from the host apps.

Most recently, Zhang el al. [47] uncovered a novel identity con-

fusion vulnerability caused by multiple reasons such as timing,

frame, or URL parsing in an array of super apps and demonstrated

concrete attacks with this vulnerability, such as bypassing security

patches. Different from the existing works, our study focused on

both the attacks and vulnerability detection of the novel CMRF

attacks caused by missing checks in cross mini-app channel.

Cross-app Security. The cross-app security issues were first dis-

covered in the web security domain, where two web apps with

weak authentication can be subject to various attacks such as

XSS [21, 23], CSRF [17], postMessage abuse [37], cross-domain

requests (CORS) attacks [12, 29] and login CSRF [10]. Later, a set

of detection frameworks (e.g., with deep learning to help discrimi-

nate CSRF requests [11, 39], or property graph and program analy-

sis [35]) and defenses (e.g, [24, 25]) were proposed to understand

and defend against these attacks.

Cross-app security also exists in mobile apps (e.g., [18, 20, 30,

44, 46]). For example, Chin et al. [15] investigated the inter-app

communication channel and proposed a detection tool using app

permission and intent contents as a detection proxy. In terms of

the hijacking of cross-app communication channel such as Android

Intent, Lu et al. [33] also proposed an approach to use static analysis

to detect suspicious apps. On top of cross-app channels, Wang et

al. [44] inspected more channels such as schema and webacesss-

ing channels, and showed that a wide range of attacks may work

against these channels due to the lack of origin-based protection.

Xing et al. [46] studied the cross-app resources sharing channels in

MAC OS X and iOS, and discovered that unauthorized cross-app

resource access attacks (XARA) can work against these devices.

Li et al. proposed the Cross-App WebView Infection (XAWI) vul-

nerability [30] against the web views, which powers a series of

multi-app, colluding attacks.

Our CMRF attacks are different compared to these existing works.

First, our attacks exploit the cross-miniapp channel that uniquely ex-

ists in mini-app paradigm, and the workflow of this channel is com-

pletely different from both URL redirection in web apps, and intent

mechanism in Android. Second, being mini by nature, the miniapps

are heavily relied on the cross-miniapp channel to complete sophis-

ticated tasks, and given the rich APIs provided by their super apps,

the miniapps can now access a large range of sensitive resources

(e.g., invoice, sport data, user account info), and these access can

cause severe security consequences if not properly implemented.

10 CONCLUSION

Wehave presented a novel cross-miniapp request forgery (CMRF) at-

tack, which is caused by the missing checks of the sender’s miniapp

ID in a receiver miniapp. To understand how popular the miniapps

are vulnerable to our attacks, we developed CmrfScanner, which

has identified 52,394 (2.04%) WeChat miniapps and 494 (0.33%)

Baidu miniapps that have used the cross-miniapp communication

channel, and 50,281 (95.97%) of WeChat miniapps and 493 (99.80%)

of Baidu miniapps are subject to CMRF attacks. Among all those

miniapps that do not validate appIDs, there are 28,843 WeChat

miniapps and 35 Baidu miniapps that have the privileges to access

the sensitive data and can lead to severe security consequences

such as shopping for free, promotion abuse, and device manipula-

tions. Finally, we have disclosed our findings to the corresponding

vendors, which have confirmed our attacks.

ACKNOWLEDGEMENTS

We would like to thank Chao Wang in our lab for his valuable

insights on the security mechanism of super apps. We also thank

anonymous reviewers for their invaluable comments. This research

was supported in part by NSF awards 1834215 and 2112471. Any

opinions, findings, conclusions, or recommendations expressed are

those of the authors and not necessarily of the NSF.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yuqing Yang, Yue Zhang, & Zhiqiang Lin

REFERENCES
[1] Authorization | weixin public doc. https://developers.weixin.qq.com/miniprogr

am/en/dev/framework/open-ability/authorize.html. (Accessed on 09/05/2022).
[2] China’s tencent takes on the app store with launch of mini programs for

wechat. https://techcrunch.com/2017/01/09/wechat-mini-programs/. (Accessed
on 08/05/2022).

[3] Network | weixin public doc. https://developers.weixin.qq.com/miniprogram/e
n/dev/framework/ability/network.html. (Accessed on 09/05/2022).

[4] Snap minis. https://minis.snapchat.com/.
[5] Wechat active users worldwide 2022 | statista. https://www.statista.com/sta

tistics/255778/number-of-active-wechat-messenger-accounts/. (Accessed on
09/05/2022).

[6] Wechat revenue and usage statistics (2022) - business of apps. https://www.busi
nessofapps.com/data/wechat-statistics/. (Accessed on 09/05/2022).

[7] wx.requestpayment. https://developers.weixin.qq.com/miniprogram/en/dev/ap
i/payment/wx.requestPayment.html. (Accessed on 09/05/2022).

[8] The total size of all subpackages of a Mini Program cannot exceed 12 MB.
https://developers.weixin.qq.com/miniprogram/en/dev/framework/subpackages.
html, 06 2020. (Accessed on 04/30/2022).

[9] Allison. Wechat mini-programs 2020: What your brand should know about this
daily-life essential. https://daxueconsulting.com/wechat-mini-programs-2020-
report/, 2020.

[10] Adam Barth, Collin Jackson, and John C Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 75–88, 2008.

[11] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and Gabriele
Tolomei. Mitch: A machine learning approach to the black-box detection of
csrf vulnerabilities. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 528–543, 2019.

[12] Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern Paxson, and
Min Yang. We still {Don’t} have secure {Cross-Domain} requests: an empirical
study of {CORS}. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1079–1093, 2018.

[13] Xin Chen, Xi Zhou, Huan Li, Jinlan Li, and Hua Jiang. The value of wechat as a
source of information on the covid-19 in china. Bull World Health Organ, 2020.

[14] Ao Cheng, Gang Ren, TaehoHong, KichanNam, and Chulmo Koo. An exploratory
analysis of travel-related wechat mini program usage: affordance theory per-
spective. In Information and Communication Technologies in Tourism 2019, pages
333–343. Springer, 2019.

[15] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and DavidWagner. Analyzing
inter-application communication in android. In Proceedings of the 9th Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys ’11, page
239–252, New York, NY, USA, 2011. Association for Computing Machinery.

[16] Breno Dantas Cruz and Eli Tilevich. Intent to share: enhancing android inter-
component communication for distributed devices. In 2018 IEEE/ACM 5th Inter-
national Conference on Mobile Software Engineering and Systems (MOBILESoft),
pages 94–104. IEEE, 2018.

[17] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. Automatic
and precise client-side protection against csrf attacks. In European Symposium
on Research in Computer Security, pages 100–116. Springer, 2011.

[18] Wenrui Diao, Xiangyu Liu, Zhe Zhou, Kehuan Zhang, and Zhou Li. Mind-reading:
Privacy attacks exploiting cross-app keyevent injections. In European Symposium
on Research in Computer Security, pages 20–39. Springer, 2015.

[19] WeiXin Public Doc. wx.navigatetominiprogram. https://developers.weixin.qq.c
om/miniprogram/dev/api/navigate/wx.navigateToMiniProgram.html.

[20] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo, Qingchuan
Zhao, and Zhiqiang Lin. FIRMSCOPE: Automatic uncovering of Privilege-
Escalation vulnerabilities in Pre-Installed apps in android firmware. In 29th
USENIX Security Symposium (USENIX Security 20), pages 2379–2396, August 2020.

[21] Benjamin Eriksson, Pablo Picazo-Sanchez, and Andrei Sabelfeld. Hardening
the security analysis of browser extensions. In ACM Symposium On Applied
Computing (SAC), 2022.

[22] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock. Doublex:
Statically detecting vulnerable data flows in browser extensions at scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1789–1804, 2021.

[23] Jeremiah Grossman, Seth Fogie, Robert Hansen, Anton Rager, and Petko D Petkov.
XSS attacks: cross site scripting exploits and defense. Syngress, 2007.

[24] BB Gupta, Shashank Gupta, S Gangwar, M Kumar, and PK Meena. Cross-site
scripting (xss) abuse and defense: exploitation on several testing bed environ-
ments and its defense. Journal of Information Privacy and Security, 11(2):118–136,
2015.

[25] Shashank Gupta and Brij Bhooshan Gupta. Cross-site scripting (xss) attacks and
defense mechanisms: classification and state-of-the-art. International Journal of
System Assurance Engineering and Management, 8(1):512–530, 2017.

[26] Lei Hao, FuchengWan, NingMa, and YichengWang. Analysis of the development
of wechat mini program. In Journal of Physics: Conference Series, volume 1087,
page 062040. IOP Publishing, 2018.

[27] Tencent. Inc. 55+ wechat statistics - 2022 update. https://99firms.com/blog/we
chat-statistics/#gref.

[28] MANSOOR IQBAL. Tiktok revenue and usage statistics (2020). https://www.bu
sinessofapps.com/data/tik-tok-statistics/, 2020.

[29] Sebastian Lekies, Nick Nikiforakis, Walter Tighzert, Frank Piessens, and Martin
Johns. Demacro: Defense against malicious cross-domain requests. In Inter-
national Workshop on Recent Advances in Intrusion Detection, pages 254–273.
Springer, 2012.

[30] Tongxin Li, Xueqiang Wang, Mingming Zha, Kai Chen, XiaoFeng Wang, Luyi
Xing, Xiaolong Bai, Nan Zhang, and Xinhui Han. Unleashing the walking dead:
Understanding cross-app remote infections on mobile webviews. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 829–844, 2017.

[31] Qinzhen Liang and Chengyang Chang. Construction of teaching model based
on wechat mini program. International Journal of Science, 16(1):54–59, 2019.

[32] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and
Xueqiang Wang. Demystifying resource management risks in emerging mobile
app-in-app ecosystems. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 569–585, 2020.

[33] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically
vetting android apps for component hijacking vulnerabilities. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, CCS ’12,
page 229–240, New York, NY, USA, 2012. Association for Computing Machinery.

[34] Natalie Lui. Wechat mini programs: The complete guide for business. https:
//www.dragonsocial.net/blog/wechat-mini-programs/, 2020.

[35] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian
Rossow. Deemon: Detecting csrf with dynamic analysis and property graphs. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, page 1757–1771, New York, NY, USA, 2017. Association for
Computing Machinery.

[36] Qianhui Rao and Eunju Ko. Impulsive purchasing and luxury brand loyalty in
wechat mini program. Asia Pacific Journal of Marketing and Logistics, 2021.

[37] Sooel Son and Vitaly Shmatikov. The postman always rings twice: Attacking
and defending postmessage in html5 websites. In NDSS, 2013.

[38] Business statistics. 90 baidu statistics and facts. https://expandedramblings.co
m/index.php/baidu-stats/, 2020.

[39] Marius Steffens and Ben Stock. Pmforce: Systematically analyzing postmessage
handlers at scale. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 493–505, 2020.

[40] Mark Stiltner. The top 6 super apps in asia – and what they reveal about the
global trend. https://www.rapyd.net/blog/the-top-6-super-apps-in-asia-and-
what-they-reveal-about-a-global-trend/.

[41] Yiling Sui, Tian Wang, and Xiaochun Wang. The impact of wechat app-based
education and rehabilitation program on anxiety, depression, quality of life, loss
of follow-up and survival in non-small cell lung cancer patients who underwent
surgical resection. European Journal of Oncology Nursing, 45:101707, 2020.

[42] W3C. Miniapp standardization white paper. https://w3c.github.io/miniapp/whi
te-paper/, 2020.

[43] FeilongWang, Lily Dongxia Xiao, KaifaWang, Min Li, and Yanni Yang. Evaluation
of a wechat-based dementia-specific training program for nurses in primary care
settings: A randomized controlled trial. Applied Nursing Research, 38:51–59, 2017.

[44] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. Unauthorized origin
crossing on mobile platforms: Threats and mitigation. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 635–646,
2013.

[45] wechatwiki.com. Wechat data, insights and statistics: user profile, behaviours,
usages, market trends. https://wechatwiki.com/wechat-resources/wechat-data-
insight-trend-statistics/, 2019.

[46] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang, Kai Chen, Xiaojing Liao,
Shi-Min Hu, and Xinhui Han. Cracking app isolation on apple: Unauthorized
cross-app resource access on mac os˜ x and ios. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 31–43, 2015.

[47] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,
Yuan Zhang, Guangliang Yang, and Min Yang. Identity confusion in webview-
basedmobile app-in-app ecosystems. In 31st USENIX Security Symposium (USENIX
Security’22), 2022.

[48] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang
Lin. A measurement study of wechat mini-apps. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 5(2):1–25, 2021.

[49] Kaina Zhou,WenWang,Wenqian Zhao, Lulu Li, Mengyue Zhang, Pingli Guo, Can
Zhou, Minjie Li, Jinghua An, Jin Li, et al. Benefits of a wechat-based multimodal
nursing program on early rehabilitation in postoperative women with breast
cancer: A clinical randomized controlled trial. International journal of nursing
studies, 106:103565, 2020.

